The Non-Autonomous Chiral Model and the Ernst Equation of General Relativity in the Bidifferential Calculus Framework

The non-autonomous chiral model equation for an m×m matrix function on a two-dimensional space appears in particular in general relativity, where for m=2 a certain reduction of it determines stationary, axially symmetric solutions of Einstein's vacuum equations, and for m=3 solutions of the Ein...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Dimakis, A., Kanning, N., Müller-Hoissen, F.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148083
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Non-Autonomous Chiral Model and the Ernst Equation of General Relativity in the Bidifferential Calculus Framework / A. Dimakis, N. Kanning, F. Müller-Hoissen // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 57 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The non-autonomous chiral model equation for an m×m matrix function on a two-dimensional space appears in particular in general relativity, where for m=2 a certain reduction of it determines stationary, axially symmetric solutions of Einstein's vacuum equations, and for m=3 solutions of the Einstein-Maxwell equations. Using a very simple and general result of the bidifferential calculus approach to integrable partial differential and difference equations, we generate a large class of exact solutions of this chiral model. The solutions are parametrized by a set of matrices, the size of which can be arbitrarily large. The matrices are subject to a Sylvester equation that has to be solved and generically admits a unique solution. By imposing the aforementioned reductions on the matrix data, we recover the Ernst potentials of multi-Kerr-NUT and multi-Deminski-Newman metrics.