Routh Reduction by Stages

This paper deals with the Lagrangian analogue of symplectic or point reduction by stages. We develop Routh reduction as a reduction technique that preserves the Lagrangian nature of the dynamics. To do so we heavily rely on the relation between Routh reduction and cotangent symplectic reduction. The...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Langerock, B., Mestdag, T., Vankerschaver, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148086
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Routh Reduction by Stages / B. Langerock, T. Mestdag, J. Vankerschaver // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148086
record_format dspace
spelling irk-123456789-1480862019-02-17T01:27:41Z Routh Reduction by Stages Langerock, B. Mestdag, T. Vankerschaver, J. This paper deals with the Lagrangian analogue of symplectic or point reduction by stages. We develop Routh reduction as a reduction technique that preserves the Lagrangian nature of the dynamics. To do so we heavily rely on the relation between Routh reduction and cotangent symplectic reduction. The main results in this paper are: (i) we develop a class of so called magnetic Lagrangian systems and this class has the property that it is closed under Routh reduction; (ii) we construct a transformation relating the magnetic Lagrangian system obtained after two subsequent Routh reductions and the magnetic Lagrangian system obtained after Routh reduction w.r.t. to the full symmetry group. 2011 Article Routh Reduction by Stages / B. Langerock, T. Mestdag, J. Vankerschaver // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 37J05; 37J15; 52D20 DOI: http://dx.doi.org/10.3842/SIGMA.2011.109 http://dspace.nbuv.gov.ua/handle/123456789/148086 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description This paper deals with the Lagrangian analogue of symplectic or point reduction by stages. We develop Routh reduction as a reduction technique that preserves the Lagrangian nature of the dynamics. To do so we heavily rely on the relation between Routh reduction and cotangent symplectic reduction. The main results in this paper are: (i) we develop a class of so called magnetic Lagrangian systems and this class has the property that it is closed under Routh reduction; (ii) we construct a transformation relating the magnetic Lagrangian system obtained after two subsequent Routh reductions and the magnetic Lagrangian system obtained after Routh reduction w.r.t. to the full symmetry group.
format Article
author Langerock, B.
Mestdag, T.
Vankerschaver, J.
spellingShingle Langerock, B.
Mestdag, T.
Vankerschaver, J.
Routh Reduction by Stages
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Langerock, B.
Mestdag, T.
Vankerschaver, J.
author_sort Langerock, B.
title Routh Reduction by Stages
title_short Routh Reduction by Stages
title_full Routh Reduction by Stages
title_fullStr Routh Reduction by Stages
title_full_unstemmed Routh Reduction by Stages
title_sort routh reduction by stages
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/148086
citation_txt Routh Reduction by Stages / B. Langerock, T. Mestdag, J. Vankerschaver // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT langerockb routhreductionbystages
AT mestdagt routhreductionbystages
AT vankerschaverj routhreductionbystages
first_indexed 2023-05-20T17:28:54Z
last_indexed 2023-05-20T17:28:54Z
_version_ 1796153399316578304