Resolutions of Identity for Some Non-Hermitian Hamiltonians. II. Proofs
This part is a continuation of the Part I where we built resolutions of identity for certain non-Hermitian Hamiltonians constructed of biorthogonal sets of their eigen- and associated functions for the spectral problem defined on entire axis. Non-Hermitian Hamiltonians under consideration are taken...
Збережено в:
Дата: | 2011 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148089 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Resolutions of Identity for Some Non-Hermitian Hamiltonians. II. Proofs / A.V. Sokolov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 4 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | This part is a continuation of the Part I where we built resolutions of identity for certain non-Hermitian Hamiltonians constructed of biorthogonal sets of their eigen- and associated functions for the spectral problem defined on entire axis. Non-Hermitian Hamiltonians under consideration are taken with continuous spectrum and the following cases are examined: an exceptional point of arbitrary multiplicity situated on a boundary of continuous spectrum and an exceptional point situated inside of continuous spectrum. In the present work the rigorous proofs are given for the resolutions of identity in both cases. |
---|