Linear and Nonlinear EEG Synchronization in Alzheimer’s Disease

As is known, Alzheimer’s disease (AD) is associated with cognitive deficits due to significant neuronal loss. Reduced connectivity might be manifested as changes in the synchronization of electrical activity of collaborating parts of the brain. We used wavelet coherence to estimate linear/nonline...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Vyšata, O., Vališ, M., Procházka, A., Rusina, R., Pazdera, L.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізіології ім. О.О. Богомольця НАН України 2015
Назва видання:Нейрофизиология
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148136
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Linear and Nonlinear EEG Synchronization in Alzheimer’s Disease / O. Vyšata, M. Vališ, A. Procházka, R. Rusina, L. Pazdera // Нейрофизиология. — 2015. — Т. 47, № 1. — С. 55-61. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:As is known, Alzheimer’s disease (AD) is associated with cognitive deficits due to significant neuronal loss. Reduced connectivity might be manifested as changes in the synchronization of electrical activity of collaborating parts of the brain. We used wavelet coherence to estimate linear/nonlinear synchronization between EEG samples recorded from different leads. Mutual information was applied to the complex wavelet coefficients in wavelet scales to estimate nonlinear synchronization. Synchronization rates for a group of 110 patients with moderate AD (MMSE score 10 to 19) and a group of 110 healthy control subjects were compared. The most significant decrease in mutual information in AD patients was observed on the third scale in the fronto-temporal area and for wavelet coherence within the same areas as for mutual information; these areas are preferentially affected by atrophy in AD. The new method used utilizes mutual information in wavelet scales and demonstrates larger discriminatory values in AD compared to wavelet coherence.