A Network Theory View on the Thalamo-Cortical Loop
We used a network theory approach, based on the dynamic core hypothesis (DCH), to study the thalamo-cortical loop (TCL) and its subsets regarding their role in consciousness. We used the Collation of Connectivity Data on the Macaque Brain (CoCoMac) and calculated the degree distributions, transmi...
Gespeichert in:
Datum: | 2014 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут фізіології ім. О.О. Богомольця НАН України
2014
|
Schriftenreihe: | Нейрофизиология |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/148309 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | A Network Theory View on the Thalamo-Cortical Loop / F. Bakouie, S. Gharibzadeh, F. Towhidkhah // Нейрофизиология. — 2014. — Т. 46, № 5. — С. 441-447. — Бібліогр.: 22 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148309 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1483092019-02-19T01:28:22Z A Network Theory View on the Thalamo-Cortical Loop Bakouie, F. Gharibzadeh, S. Towhidkhah, F. We used a network theory approach, based on the dynamic core hypothesis (DCH), to study the thalamo-cortical loop (TCL) and its subsets regarding their role in consciousness. We used the Collation of Connectivity Data on the Macaque Brain (CoCoMac) and calculated the degree distributions, transmission coefficients, connection density, clustering coefficients, path lengths, and modularity. Our results showed that the TCL and cortex exhibit exponential degree distributions, and the ratio of efferent/afferent connections in the thalamus is smaller than 1.0 This may support the notion that the connections received by the thalamus from the cortex play a key role in improving information processing in the conscious states. The average values of transmission coefficients for the cortex and TCL were found to be equal to 1.49 and 1.28, respectively. This indicates that: (i) the cortex is a system that mainly transmits information outward rather than receives it; (ii) the TCL is a cooperative system that performs this in a give-and-take manner; (iii) connections of the cortex are denser than those in the TCL, showing that the cortex might be advantageous for processing of complicated information during consciousness; (iv) both the TCL and cortex are small-world systems; (v) the scaled value of the characteristic path length in the TCL is smaller than that in the cortex, which implies a higher speed potential for information processing in the TCL than in the cortex; (vi) the scaled value of the clustering coefficient is nearly the same in the cortex and TCL, and (vii) the number of modules is 5 in the cortex and 6 in the TCL. Ми проаналізували організацію таламо-кортикальної петлі (ТКП) і її компонентів, враховуючи її роль у забезпеченні свідомості, з використанням підходу, заснованого на теорії мереж і гіпотезі динамічного ядра. Ми використали базу даних про зв’язки в мозку макака (CoCoMac), розрахували розподіли рівнів і значення коефіцієнтів передачі, щільності зв’язків, коефіцієнтів кластеризації, довжини зв’язків і модальності. Отримані результати показали, що розподіли рівнів для ТКП і кори є експоненціальними, а відношення кількостей еферентних та аферентних зв’язків у таламусі є меншим одиниці. Це підтверджує положення про те, що зв’язки, одержані корою від таламуса, відіграють ключову роль в оптимізації обробки інформації в станах наявності свідомості. Середні значення коефіцієнтів передачі для кори і ТКП дорівнювали 1.49 і 1.28 відповідно. Згідно з цим, по-перше, кора є системою, котра в більшій мірі передає інформацію, ніж отримує її; по-друге, ТКП є кооперативною системою, яка виконує це в модусі „дай-та-бери”; по-третє, зв’язки в корі є щільнішими, ніж у ТКП, що свідчить про провідну роль кори в обробці складної інформації в стані свідомості; по-четверте, і ТКП, і кора є small-worldсистемами; по-п’яте, скалярне значення довжини зв’язків у ТКП є меншим, ніж у корі, що вказує на потенційно більш високу швидкість обробки інформації в ТКП, ніж у корі; пошосте, скалярні значення коефіцієнта кластеризації в ТКП і корі є приблизно однаковими, і, по-сьоме, кількості модулів у корі і ТКП відповідають п’яти і шести. 2014 Article A Network Theory View on the Thalamo-Cortical Loop / F. Bakouie, S. Gharibzadeh, F. Towhidkhah // Нейрофизиология. — 2014. — Т. 46, № 5. — С. 441-447. — Бібліогр.: 22 назв. — англ. 0028-2561 http://dspace.nbuv.gov.ua/handle/123456789/148309 519.711+612.826 en Нейрофизиология Інститут фізіології ім. О.О. Богомольця НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We used a network theory approach, based on the dynamic core hypothesis (DCH), to study
the thalamo-cortical loop (TCL) and its subsets regarding their role in consciousness. We
used the Collation of Connectivity Data on the Macaque Brain (CoCoMac) and calculated the
degree distributions, transmission coefficients, connection density, clustering coefficients,
path lengths, and modularity. Our results showed that the TCL and cortex exhibit exponential
degree distributions, and the ratio of efferent/afferent connections in the thalamus is smaller
than 1.0 This may support the notion that the connections received by the thalamus from
the cortex play a key role in improving information processing in the conscious states. The
average values of transmission coefficients for the cortex and TCL were found to be equal to
1.49 and 1.28, respectively. This indicates that: (i) the cortex is a system that mainly transmits information outward rather than receives it; (ii) the TCL is a cooperative system that
performs this in a give-and-take manner; (iii) connections of the cortex are denser than those
in the TCL, showing that the cortex might be advantageous for processing of complicated
information during consciousness; (iv) both the TCL and cortex are small-world systems; (v)
the scaled value of the characteristic path length in the TCL is smaller than that in the cortex,
which implies a higher speed potential for information processing in the TCL than in the
cortex; (vi) the scaled value of the clustering coefficient is nearly the same in the cortex and
TCL, and (vii) the number of modules is 5 in the cortex and 6 in the TCL. |
format |
Article |
author |
Bakouie, F. Gharibzadeh, S. Towhidkhah, F. |
spellingShingle |
Bakouie, F. Gharibzadeh, S. Towhidkhah, F. A Network Theory View on the Thalamo-Cortical Loop Нейрофизиология |
author_facet |
Bakouie, F. Gharibzadeh, S. Towhidkhah, F. |
author_sort |
Bakouie, F. |
title |
A Network Theory View on the Thalamo-Cortical Loop |
title_short |
A Network Theory View on the Thalamo-Cortical Loop |
title_full |
A Network Theory View on the Thalamo-Cortical Loop |
title_fullStr |
A Network Theory View on the Thalamo-Cortical Loop |
title_full_unstemmed |
A Network Theory View on the Thalamo-Cortical Loop |
title_sort |
network theory view on the thalamo-cortical loop |
publisher |
Інститут фізіології ім. О.О. Богомольця НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148309 |
citation_txt |
A Network Theory View on the Thalamo-Cortical Loop / F. Bakouie, S. Gharibzadeh, F. Towhidkhah // Нейрофизиология. — 2014. — Т. 46, № 5. — С. 441-447. — Бібліогр.: 22 назв. — англ. |
series |
Нейрофизиология |
work_keys_str_mv |
AT bakouief anetworktheoryviewonthethalamocorticalloop AT gharibzadehs anetworktheoryviewonthethalamocorticalloop AT towhidkhahf anetworktheoryviewonthethalamocorticalloop AT bakouief networktheoryviewonthethalamocorticalloop AT gharibzadehs networktheoryviewonthethalamocorticalloop AT towhidkhahf networktheoryviewonthethalamocorticalloop |
first_indexed |
2025-07-12T19:06:51Z |
last_indexed |
2025-07-12T19:06:51Z |
_version_ |
1837469239477272576 |
fulltext |
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2014.—T. 46, № 5 441
UDC 519.711+612.826
F. BAKOUIE1, S. GHARIBZADEH1, and F. TOWHIDKHAH2
A NETWORK THEORY VIEW ON THE THALAMO-CORTICAL LOOP
Received August 8, 2013
We used a network theory approach, based on the dynamic core hypothesis (DCH), to study
the thalamo-cortical loop (TCL) and its subsets regarding their role in consciousness. We
used the Collation of Connectivity Data on the Macaque Brain (CoCoMac) and calculated the
degree distributions, transmission coefficients, connection density, clustering coefficients,
path lengths, and modularity. Our results showed that the TCL and cortex exhibit exponential
degree distributions, and the ratio of efferent/afferent connections in the thalamus is smaller
than 1.0 This may support the notion that the connections received by the thalamus from
the cortex play a key role in improving information processing in the conscious states. The
average values of transmission coefficients for the cortex and TCL were found to be equal to
1.49 and 1.28, respectively. This indicates that: (i) the cortex is a system that mainly trans-
mits information outward rather than receives it; (ii) the TCL is a cooperative system that
performs this in a give-and-take manner; (iii) connections of the cortex are denser than those
in the TCL, showing that the cortex might be advantageous for processing of complicated
information during consciousness; (iv) both the TCL and cortex are small-world systems; (v)
the scaled value of the characteristic path length in the TCL is smaller than that in the cortex,
which implies a higher speed potential for information processing in the TCL than in the
cortex; (vi) the scaled value of the clustering coefficient is nearly the same in the cortex and
TCL, and (vii) the number of modules is 5 in the cortex and 6 in the TCL.
Keywords: clustering coefficient, characteristic path length, transmission coefficient,
modularity, small-world, brain networks.
1 Institute for Cognitive and Brain Sciences, Shahid-Beheshti University,
Tehran, Iran.
2Cybernetics and Modeling of Biological Systems Laboratory, Biomedical
Engineering Faculty, Amirkabir University of Technology, Tehran, Iran.
Correspondence should be addressed to S. Gharibzadeh
(e-mail: gharibzadeh@aut.ac.ir) or to F. Bakouie
(e-mail: f_bakouie@sbu.ac.ir).
INTRODUCTION
One of the main problems in neuroscience is to find the
neuronal correlate of consciousness (NCC). In order to
deal with this problem, deep researches were carried
out within the past two decades, and three main brain
systems having the potential to produce consciousness
have been proposed. (i) The thalamo-cortical loop
(TCL) as a network containing interconnected cortical
areas and thalamic nuclei (thalamo-cortico-thalamic
connections). The widespread recursive interactions
among neuronal populations in the TCL are suggested
to be crucial for consciousness [1]. (ii) The cortex. It
has been suggested that the actual NCC is exclusively
the cortex. In particular, Crick and Koch [2] speculated
that the actual NCC may be “only a small set of neurons,
especially those projecting from the back of the cortex
to its frontal part”. (iii) Thalamus. Although most
previous studies debated on the first two possibilities,
Ward [3] proposed the ”thalamic dynamic core theory
of conscious experience,” which emphasized the role
of the thalamus in producing primary consciousness.
Moreover, one of the main hypotheses concerning
consciousness is the dynamic core hypothesis (DCH).
According to the DCH, since conscious experiences
are integrated and differentiated simultaneously, its
neuronal correlates should also have these features at
the structural level [4-6]. If a system is responsible
for consciousness, it should have these attributes
at the structural level in order to produce different
integrated contents over time. One way to study the
structural characteristics of complex networks is the
network theory approach. Using the network theory
provides an overview on the functions of networks
based on their structures. Recently, network studies
have been carried out on some brain systems. For
example, Modha and Singh [7] studied network
structural architecture of the macaque brain. Sporns
and Zwi [8] focused on the cortex and studied its
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2014.—T. 46, № 5442
F. BAKOUIE, S. GHARIBZADEH, and F. TOWHIDKHAH
small-worldness. Also, Hagmann et al. [4] studied the
human cerebral cortex and observed a correspondence
between structural and functional connectivities
based on the graph theory. Because of the suggested
role of the TCL in consciousness, network studies
would be advantageous. Scannell et al. [5] studied
exper imenta l ly the cor t ico- tha lamic sys tem
organization in the cat with a collation method and
then analyzed its global features that are not apparent
in the primary connection data.
In our research, we used the network theory approach
to study the TCL and its subsets, i.e., cortex and
thalamus, regarding their role in consciousness. For this
purpose, we used the data on the macaque cortex and
the TCL anatomical connections [7]. This information is
presented in the Collation of Connectivity Data on the
Macaque Brain (CoCoMac) database [6]. We calculated
the degree distributions, transmission coefficients,
connection density, small-worldness, and modularity in
the TCL, cortex, and thalamus. We finally discussed the
above-mentioned measures in order to uncover the role
of these areas in consciousness.
METHODS
Dataset. The data used in our study are anatomical
connections of TCL and cortex of the macaque. These
data is a part of the network presented by Modha and
Singh [7]. They constructed a macaque brain network
from the CoCoMac neuro in formatic dataset [6, 9,
10]. Their network contained 383 regions of the cor-
tex, thalamus, and basal ganglia. They used the con-
nectivity information of the whole brain, while we fo-
cused on TCL and cortex connections in our study.
For this purpose, we selected connections between the
thalamus and cortex. This means that we selected the
edges whose sources and destination nodes are loca-
lized in the thalamus or cortex. Based on the edge re-
lations presented [7], we constructed a 340×340 bina-
ry connection matrix (Fig. 1). The nodes with indices
from 1 to 73 represent thalamus regions, and nodes
with indices from 74 to 340 represent cortex regions.
In this figure, three sub-networks, i.e., thalamo-corti-
cal, cortico-thalamic, and cortico-cortical (cortex), are
shown.
Network Analysis. In this paper, we used Mat-
lab 7.8 for calculations of the degree distribution and
transmission coefficient. The remaining analyses were
done using Brain Connectivity Toolbox (BCT) [11].
Degree Distribution. The degree of a node k is the
number of its connections with other nodes:
, (1)
when link (i,j) exists, ; otherwise, .
The degree distribution is the probability distri-
bution of these degrees over the whole network. Cu-
mulative degree distribution is the fraction of nodes
with degrees greater than or equal to k. For a directed
network, in-degree and out-degree are defined as the
number of edges coming into/out of a vertex in a di-
rected graph.
Transmission Coefficient. In order to locally char-
acterize inputs and outputs of a specific brain area
(which is represented by a node in the brain graph),
we use a simple measure known as the “transmission
coefficient.” Based on the definition, it is the relative
number of efferents to afferents (in the graph theory
known as out-degree and in-degree) [12].
For a given area (node)i, the transmission index (Ti)
is
, (2)
50
50
Thalamo-
thalamic
connections
Thalamo-cortical connection matrix
Thalamo-
cortical
connections
Cortico-
cortical
connections
Cortico-
thalamic
connections
100
100
150
150
200
200
300
300
250
250
F i g. 1. Connectivity matrix of the thalamo-
cortical loop (TCL). Sub-networks of the
TCL are shown.
Р и с. 1. Матриця зв’язності в таламо-
кортикальній петлі.
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2014.—T. 46, № 5 443
A NETWORK THEORY VIEW ON THE THALAMO-CORTICAL LOOP
where
Ai,j = 1 when connection from area i to area j exists, and
Ai,j = 0 when connection from area i to area j is absent,
ei and ai are efferent and afferent connections; εi and
αi are indices for information on efferents and affer-
ents, respectively; Ti> 0.5 means that the area i has
more efferents than afferents; for Ti< 0.5, the situation
is opposite [13].
Modularity.The modules in a network are its
divisions into non-overlapping groups of nodes so that
the number of within-group edges is maximized, and
at the same time the number of between-group edges
is minimized.
The modularity Q can be defined as a cost function:
Q = (fraction of the edges within communities) –
– (expected fraction of such edges) (3)
where a community is assumed to be groups of nodes
in a network that are more densely connected internally
than with the rest of the nodes. For a directed network,
the equivalent of Eq. (3) is
, (4)
where m is the total number of edges in the network,
which will have an edge from vertex j to vertex i
with the probability (ki
in·kj
out)/m ; ki
in and kj
out are the
in- and out-degrees of the vertices, respectively; Aij
represents the connectivity between i and j and will
be equal to 1 if there is an edge from i to j and equal
to zero otherwise, ci is the label of the community to
which vertex i is assigned, and δij is the Kronecker
delta symbol. Then, a search algorithm is needed in
order to find the optimum division of the network into
communities, {ci}. The optimization process is based
on a Q cost function; the best division makes the Q
maximum.In our study, we used the Brain Connectivity
Toolbox (BCT) for calculation of modularity [11].
In this toolbox, determination of optimized module
structures is based on the Newman optimization
method [14].
Small-Worldness. When studying complex networks,
one of the most interesting phenomena is “small-
worldness”, introduced by Watts and Strogatz [15].
Small-world networks have two main key features, a
high “clustering coefficient” (similar to that in regular
networks) and a low “characteristic path length” (similar
to that in random networks). These two attributes provide
small-world networks with some benefits in processing
and transmission of information [16].
Based on the definition, the node clustering
coefficient γ (ν) is the ratio of existing connections
among the βv neighbors and the maximal possible
number of such connections (βv
2–βv). The clustering
coefficient γ of the graph is the average of all node
clustering coefficients [17].
An ordered sequence of distinct edges, which links
a source vertex j to a target vertex i, is called a “path.”
The number of distinct directed edges in the path is
defined as the “path length.” The average length of
the shortest paths is defined as the “characteristic path
length” (λ) of a graph.
In a spectrum of networks, ranging from totally
disordered to totally regular, random and lattice
networks are the two extreme topologies. For
evaluating the randomness or regularity of a given
network, it is more informative to compare λ and γ
of that network with their corresponding values in
the two extreme topologies, i.e., random and lattice
networks. Hence, scaled values of λ and γ for a given
network of unknown topology are calculated as
,(5)
, (6)
where λscl and γscl will be between 0 and 1 in
networks that are neither entirely random nor lattice.
We used the BCT for calculating of the clustering
coefficient and path length [11].
RESULTS
The above-mentioned network measures and statistics
were calculated for the macaque TCL data. Figure 2
shows the cumulative degree distribution in the TCL
and cortex. During calculation of this measure, we did
not take into consideration the direction of the edges.
It is apparent from the Fig. 2 that the patterns of the
degree distribution are nearly the same for the TCL
and cortex. In order to consider the edge directions,
in-degree and out-degree distributions of the TCL
were calculated and are shown in Fig. 3. As mentioned
before, nodes with indices 1 to 73 correspond to the
thalamus regions, and the remainder ones correspond
to the cortex regions. It can be observed that the out-
degrees for the thalamus regions are lower than the
average value over the whole TCL. Figure 4 shows
distribution of transmission coefficient, which is the
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2014.—T. 46, № 5444
F. BAKOUIE, S. GHARIBZADEH, and F. TOWHIDKHAH
ratio of out-degree to in-degree links. From this figure,
it can be seen that transmission coefficients for most
thalamic regions are smaller than 1. Figure 5 shows
results of comparison among the connection densities
in the TCL, cortex, and thalamus. It is obvious from
this figure that the connections in the cortex are denser
than those in both TCL and thalamus.
In Table 1, results of small-worldness analysis are
presented for TCL and cortex networks, as well as their
corresponding random and lattice networks. Random
and lattice networks have the same nodes and edges
with the original networks. The normalized difference
(difference of two variables divided by the larger one)
is 0.01. As is seen, the difference between clustering
coefficients in the TCL and cortex is smaller. The
scaled characteristic path lengths measure is lower
for the TCL than for the cortex (their normalized
difference is 0.28).
Results of modularity analysis are presented in
Table 2. The number of modules is 6 for TCL and 5
for the cortex. The normalization difference between
modularity indices of these two is 0.061.
101 A
A
B
B
100
10–1
10–2
10–3
0 020 2040 4060 6080 80100 100120 120140 140160 160180 180200
F i g. 2. Cumulative degree distributions for the TCL and cortex (A and B, respectively).
Р и с. 2. Накопичені розподіли рівнів для таламо-кортикальної петлі та кори.
0
0 050 50100 100150 150200 200250 250300 300350 350
10
20
30
40
50
60
70
80
90
100
F i g. 3. In-degree and out-degree distributions for the TCL and cortex (A and B, respectively).
Р и с. 3. Розподіли внутрішніх та зовнішніх рівнів для таламо-кортикальної петлі та кори.
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2014.—T. 46, № 5 445
A NETWORK THEORY VIEW ON THE THALAMO-CORTICAL LOOP
DISCUSSION
The majority of works showed that higher brain
functions rely on the activity of large populations
of neurons in TCL distributed networks [18, 19]. In
our study, we used graph theory methods to study the
TCL, cortex, and thalamus in order to investigate their
roles in consciousness in the sense of DCH.
In general, our results show that: (i) The TCL and
cortex exhibit exponential-degree distributions (see
Fig. 2). The patterns of degree distribution for the TCL
and cortex are the same. This result is in accordance
with the data of Modha and Singh [7]; in their work,
they studied whole brain networks. Hagmann et al. [4]
calculated the degree distribution of the human cortex,
which exhibited a normal-like distribution. It seems
that the type of data, the method of data acquisition,
and the resolution of the data may affect the results
and cause such differences. It should be noted that the
Modha and Singh matrix used in our study is redundant
(i.e., it includes overlapping regions that are difficult
to interpret correctly within the framework of a single
connectivity matrix). Moreover, it was extracted from
the CoCoMac using an oversimplified technique that
ignored contradictory statements in the database [20,
21].
(ii) The out-degrees of thalamus regions are smaller
than the out-degree average over the TCL. This
shows that the thalamus sends a smaller number of
connections compared with other parts of the network
(see Fig.3). On the other hand, Fig. 4 shows that
the ratio of efferent to afferent connections in the
thalamus (thalamo-thalamic network) is less than
1(with average 0.72), which indicates that afferent
connections are more numerous than efferent ones. It
seems that the reciprocal connections received by the
thalamus from the cortex play a key role in improving
information processing in the dynamic core, which
will produce conscious states. The average values of
transmission coefficients for the cortex and TCL are
1.49 and 1.28, respectively. This explains the cortex
0
0 50 100 150 200 250 300 350
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
Cortex Thalamo-cortical loop Thalamo-thalamic
5
10
15
20
25
30
35
F i g. 4. Distribution of the transmission coefficients in the TCL.
Р и с. 4. Розподіл коефіцієнтів передачі для таламо-кортикальної
петлі.
F i g. 5. Connection densities in the cortex, TCL and thalamus.
Р и с. 5. Щільності зв’язків у корі таламо-кортикальній петлі
та таламусі.
Table 1. Small-world properties of the macaque TCL and cortex
Т а б л и ц я 1. Властивості модусу „дай-та-бери” в таламо-кортикальній петлі та корі макака
Region Characteristic path length (λ) Clustering coefficient (γ)
Cortex:
Original network 2.53 0.34
Lattice 11.51 0.71
Random 2.3 0.06
TCL:
Original network 2.57 0.33
Lattice 13.87 0.71
Random 2.37 0.049
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2014.—T. 46, № 5446
F. BAKOUIE, S. GHARIBZADEH, and F. TOWHIDKHAH
as a system which, on average, transmits information
outward rather than receives it and interprets the TCL
as a cooperative system that functions in a give-and-
take manner.
(iii) Connections in the cortex are denser than
those in the TCL.This suggests that the cortex might
be advantageous for processing of complicated
information in the state of consciousness (see Fig.5).
Both the TCL and cortex are small-world (see Table 1).
Previous studies in humans, macaques, and cats have
demonstrated the small-worldness of the cortex, but
no study has evaluated this property in the TCL [5].
Since cortical and TCL networks have different sizes,
we computed the scaled values of these two measures
according to the corresponding random and regular
networks for comparing their clustering coefficients
and path lengths. The scaled clustering coefficients
are nearly the same in the cortex and TCL (see Table
1).We found that scaled value of the characteristic path
length in the TCL is smaller than that in the cortex
(see Table 1), which may result from a higher speed of
information processing in the TCL than in the cortex.
The number of modules is 5 in the cortex and 6 in the
TCL. This supports the notion of specialization of the
TCL for performing particular information processing
in consciousness according to the DCH.
Based on the results of our study, we suggest that
TCL is the most appropriate candidate in studying the
neural correlates of consciousness. While it has the
capability of high-speed information processing, its
sub-networks have interesting attributes. Intracortical
(cortico-cortical) connections transmit information
out more readily than receive it; the thalamus
receives reciprocal cortical connections that extend
the information processing in the dynamic core of
consciousness. As a future prospect, it might be
emphasized that using the network theory approach
may be the key to uncover the functional role of the
brain during cognitive behaviors, like consciousness
[22].
Acknowledgment. This study was supported by the Iran
National Science Foundation (INSF).
The authors , F. Bakouie , S . Ghar ibzadeh, and
F. Towhidkhah, confirm that they have no conflict of interest.
Ф. Бакоуйє1,2, С. Гарибзаде1, Ф. Тоухідхах2
ЗАСТОСУВАННЯ ТЕОРІЇ МЕРЕЖ ПРИ АНАЛІЗІ
ТАЛАМО-КОРТИКАЛЬНОЇ ПЕТЛІ
1 Лабораторія нервових і когнітивних процесів
Технологічного університету Аміркабір, Тегеран (Іран).
2 Лабораторія кібернетики і моделювання біологічних си-
стем Технологічного університету Аміркабір, Тегеран
(Іран).
Р е з ю м е
Ми проаналізували організацію таламо-кортикальної петлі
(ТКП) і її компонентів, враховуючи її роль у забезпеченні
свідомості, з використанням підходу, заснованого на тео-
рії мереж і гіпотезі динамічного ядра. Ми використали базу
даних про зв’язки в мозку макака (CoCoMac), розрахували
розподіли рівнів і значення коефіцієнтів передачі, щільнос-
ті зв’язків, коефіцієнтів кластеризації, довжини зв’язків і
модальності. Отримані результати показали, що розподіли
рівнів для ТКП і кори є експоненціальними, а відношен-
ня кількостей еферентних та аферентних зв’язків у тала-
мусі є меншим одиниці. Це підтверджує положення про те,
що зв’язки, одержані корою від таламуса, відіграють клю-
чову роль в оптимізації обробки інформації в станах на-
явності свідомості. Середні значення коефіцієнтів передачі
для кори і ТКП дорівнювали 1.49 і 1.28 відповідно. Згідно
з цим, по-перше, кора є системою, котра в більшій мірі пе-
редає інформацію, ніж отримує її; по-друге, ТКП є коопе-
ративною системою, яка виконує це в модусі „дай-та-бери”;
по-третє, зв’язки в корі є щільнішими, ніж у ТКП, що свід-
чить про провідну роль кори в обробці складної інформації
в стані свідомості; по-четверте, і ТКП, і кора є small-world-
системами; по-п’яте, скалярне значення довжини зв’язків у
ТКП є меншим, ніж у корі, що вказує на потенційно більш
високу швидкість обробки інформації в ТКП, ніж у корі; по-
шосте, скалярні значення коефіцієнта кластеризації в ТКП і
корі є приблизно однаковими, і, по-сьоме, кількості модулів
у корі і ТКП відповідають п’яти і шести.
Table 2. Modularity analysis of the TCL and cortex
Т а б л и ц я 2. Аналіз модульності таламо-кортикальної петлі та кори
Region Number of modules Modularity (Q)
Macaque cortex 5 0.363
Macaque TCL 6 0.341
NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2014.—T. 46, № 5 447
A NETWORK THEORY VIEW ON THE THALAMO-CORTICAL LOOP
REFERENCES
1. O. Sporns, G. Tononi, and G. M. Edelman, “Theoretical
neuroanatomy: relating anatomical and functional connectivity
in graphs and cortical connection matrices,” Cerebr. Cortex,
10, 127-141 (2000).
2. F. Crick and C. Koch, “A framework for consciousness,” Nat.
Neurosci., 6, No. 2, 119-126 (2003)
3. L. M. Ward, “The thalamic dynamic core theory of conscious
experience,” Conscious. Cogn., 20, No. 2, 464-486 (2011).
4. P. Hagmann, L. Cammoun, X. Gigandet, et al., “Mapping the
structural core of human cerebral cortex,” PLOS, Biol., 6,
No. 7, 1479-1493 (2008).
5. J. W. Scannell, G. A. Burns, C. C. Hilgetag, et al., “The
connectional organization of the cortico-thalamic system of
the cat,” Cerebr. Cortex, 9, No. 3, 277-299 (1999).
6. R. Kötter, “Online retrieval, processing, and visualization
of primate connectivity data from the CoCoMac database,”
Neuroinformatics, 2, No. 2, 127-144 (2004).
7. D. S. Modha and R. Singh, “Network architecture of the long-
distance pathways in the macaque brain,” Proc. Natl. Acad.
Sci. USA, 107, 13485-13490 (2010).
8. O. Sporns and J. D. Zwi, “The small world of the cerebral
cortex,” Neuroinformatics, 2, 145-162 (2004).
9. K. E. Stephan, L. Kamper, A. Bozkurt, et al., “Advanced
database methodology for the Collation of Connectivity data
on the Macaque brain (CoCoMac),” Philos. Trans. Roy. Soc.,
London B (Biol. Sci.), 356, No. 1412, 1159-1186 (2011).
10. R. Bakker, T. Wachtler, and M. Diesmann, “CoCoMac 2.0
and the future of t ract- t racing databases ,” Front .
Neuroinform.,6, No. 30 (2012).
11. BCT toolbox, http://www.brain-connectivity-toolbox.net.
12. O. Sporns, D. R. Chialvo, M. Kaiser, and C. C. Hilgetag,
“Organization, development and function of complex brain
network,” Trends Cogn. Sci., 8, No. 9, 418-425 (2004).
13. R. Kötterand and K. E. Stephan, “Network participation
indices: characterizing component roles for information
processing in neural networks,” Neural Networks, 16, No. 9,
1261-1275 (2003).
14. E. A. Leicht and M. E. J. Newman, “Community structure in
directed networks,” Physical Rev. Lett., 100, No. 11, (2008).
15. D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’ networks,” Nature, 393, No. 6684, 440-442 (1998).
16. S. H. Strogatz, “Exploring complex networks,” Nature, 10,
No. 6825, 268-276 (2001).
17. M. Rubinov and O. Sporns, “Complex network measures of
brain connectivity: uses and interpretations,” NeuroImage, 52,
No. 3, 1059-1069 (2010).
18. R. Llinás, U. Ribary, D. Contreras, and C. Pedroarena, “The
neuronal basis for consciousness,” Philos. Trans. R. Soc.
London B (Biol. Sci.), 353, No. 1377, 1841-1849 (1998).
19. O. Sporns, G. Tononi, and R. Kötter, “The human connectome:
A structural description of the human brain,” PLOS Comput.
Biol., 1, No. 4: e42, (2005).
20. K. E. Stephan, K. Zilles, and R. Kötter, ”Coordinate-
independent mapping of structural and functional data by
objective relational transformation (ORT),” Philos. Trans.
Roy. Soc., London B (Biol. Sci.), 355, No. 1393, 37-54 (2000).
21. G. Bezgin, V. A. Vakorin, A. J. van Opstal, et al., “Hundreds
of brain maps in one atlas: registering coordinate-independent
primate neuro-anatomical data to a standard brain,”
NeuroImage, 62, No. 1, 67-76 (2012).
22. O. Sporns, “Network analysis, complexity, and brain function,”
Complexity, 8, No. 1, 56-60 (2002).
|