2025-02-23T10:51:27-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-148356%22&qt=morelikethis&rows=5
2025-02-23T10:51:27-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-148356%22&qt=morelikethis&rows=5
2025-02-23T10:51:27-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T10:51:27-05:00 DEBUG: Deserialized SOLR response
Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds
We present the proof of the HRR theorem for a generic complex compact manifold by evaluating the functional integral for the Witten index of the appropriate supersymmetric quantum mechanical system.
Saved in:
Main Author: | Smilga, A.V. |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2012
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/148356 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-23T10:51:27-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-148356%22&qt=morelikethis
2025-02-23T10:51:27-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-148356%22&qt=morelikethis
2025-02-23T10:51:27-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T10:51:27-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
Toeplitz Operators, Kähler Manifolds, and Line Bundles
by: Foth, T.
Published: (2007) -
Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses
by: Smilga, A.V.
Published: (2011) -
Semistability of Principal Bundles on a Kähler Manifold with a Non-Connected Structure Group
by: Biswas, I., et al.
Published: (2014) -
Eigenvalue Estimates of the spinc Dirac Operator and Harmonic Forms on Kähler-Einstein Manifolds
by: Nakad, R., et al.
Published: (2015) -
Quasicomplex N=2, d=1 Supersymmetric Sigma Models
by: Ivanov, E.A., et al.
Published: (2013)