Discrete Spectral Transformations of Skew Orthogonal Polynomials and Associated Discrete Integrable Systems

Discrete spectral transformations of skew orthogonal polynomials are presented. From these spectral transformations, it is shown that the corresponding discrete integrable systems are derived both in 1+1 dimension and in 2+1 dimension. Especially in the (2+1)-dimensional case, the corresponding syst...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Miki, H., Goda, H., Tsujimoto, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148373
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Discrete Spectral Transformations of Skew Orthogonal Polynomials and Associated Discrete Integrable Systems / H. Miki, H. Goda, S. Tsujimoto // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 27 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Discrete spectral transformations of skew orthogonal polynomials are presented. From these spectral transformations, it is shown that the corresponding discrete integrable systems are derived both in 1+1 dimension and in 2+1 dimension. Especially in the (2+1)-dimensional case, the corresponding system can be extended to 2×2 matrix form. The factorization theorem of the Christoffel kernel for skew orthogonal polynomials in random matrix theory is presented as a by-product of these transformations.