2025-02-23T10:47:59-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-148386%22&qt=morelikethis&rows=5
2025-02-23T10:47:59-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-148386%22&qt=morelikethis&rows=5
2025-02-23T10:47:59-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T10:47:59-05:00 DEBUG: Deserialized SOLR response

New Variables of Separation for the Steklov-Lyapunov System

A rigid body in an ideal fluid is an important example of Hamiltonian systems on a dual to the semidirect product Lie algebra e(3)=so(3)⋉R³. We present the bi-Hamiltonian structure and the corresponding variables of separation on this phase space for the Steklov-Lyapunov system and it's gyrosta...

Full description

Saved in:
Bibliographic Details
Main Author: Tsiganov, A.V.
Format: Article
Language:English
Published: Інститут математики НАН України 2012
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/148386
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-148386
record_format dspace
spelling irk-123456789-1483862019-02-19T01:28:40Z New Variables of Separation for the Steklov-Lyapunov System Tsiganov, A.V. A rigid body in an ideal fluid is an important example of Hamiltonian systems on a dual to the semidirect product Lie algebra e(3)=so(3)⋉R³. We present the bi-Hamiltonian structure and the corresponding variables of separation on this phase space for the Steklov-Lyapunov system and it's gyrostatic deformation. 2012 Article New Variables of Separation for the Steklov-Lyapunov System / A.V. Tsiganov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 27 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 70H20; 70H06; 37K10 DOI: http://dx.doi.org/10.3842/SIGMA.2012.012 http://dspace.nbuv.gov.ua/handle/123456789/148386 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A rigid body in an ideal fluid is an important example of Hamiltonian systems on a dual to the semidirect product Lie algebra e(3)=so(3)⋉R³. We present the bi-Hamiltonian structure and the corresponding variables of separation on this phase space for the Steklov-Lyapunov system and it's gyrostatic deformation.
format Article
author Tsiganov, A.V.
spellingShingle Tsiganov, A.V.
New Variables of Separation for the Steklov-Lyapunov System
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Tsiganov, A.V.
author_sort Tsiganov, A.V.
title New Variables of Separation for the Steklov-Lyapunov System
title_short New Variables of Separation for the Steklov-Lyapunov System
title_full New Variables of Separation for the Steklov-Lyapunov System
title_fullStr New Variables of Separation for the Steklov-Lyapunov System
title_full_unstemmed New Variables of Separation for the Steklov-Lyapunov System
title_sort new variables of separation for the steklov-lyapunov system
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148386
citation_txt New Variables of Separation for the Steklov-Lyapunov System / A.V. Tsiganov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 27 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT tsiganovav newvariablesofseparationforthesteklovlyapunovsystem
first_indexed 2023-05-20T17:30:26Z
last_indexed 2023-05-20T17:30:26Z
_version_ 1796153447769178112