New Variables of Separation for the Steklov-Lyapunov System
A rigid body in an ideal fluid is an important example of Hamiltonian systems on a dual to the semidirect product Lie algebra e(3)=so(3)⋉R³. We present the bi-Hamiltonian structure and the corresponding variables of separation on this phase space for the Steklov-Lyapunov system and it's gyrosta...
Збережено в:
Дата: | 2012 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2012
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148386 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | New Variables of Separation for the Steklov-Lyapunov System / A.V. Tsiganov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 27 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148386 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1483862019-02-19T01:28:40Z New Variables of Separation for the Steklov-Lyapunov System Tsiganov, A.V. A rigid body in an ideal fluid is an important example of Hamiltonian systems on a dual to the semidirect product Lie algebra e(3)=so(3)⋉R³. We present the bi-Hamiltonian structure and the corresponding variables of separation on this phase space for the Steklov-Lyapunov system and it's gyrostatic deformation. 2012 Article New Variables of Separation for the Steklov-Lyapunov System / A.V. Tsiganov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 27 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 70H20; 70H06; 37K10 DOI: http://dx.doi.org/10.3842/SIGMA.2012.012 http://dspace.nbuv.gov.ua/handle/123456789/148386 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A rigid body in an ideal fluid is an important example of Hamiltonian systems on a dual to the semidirect product Lie algebra e(3)=so(3)⋉R³. We present the bi-Hamiltonian structure and the corresponding variables of separation on this phase space for the Steklov-Lyapunov system and it's gyrostatic deformation. |
format |
Article |
author |
Tsiganov, A.V. |
spellingShingle |
Tsiganov, A.V. New Variables of Separation for the Steklov-Lyapunov System Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Tsiganov, A.V. |
author_sort |
Tsiganov, A.V. |
title |
New Variables of Separation for the Steklov-Lyapunov System |
title_short |
New Variables of Separation for the Steklov-Lyapunov System |
title_full |
New Variables of Separation for the Steklov-Lyapunov System |
title_fullStr |
New Variables of Separation for the Steklov-Lyapunov System |
title_full_unstemmed |
New Variables of Separation for the Steklov-Lyapunov System |
title_sort |
new variables of separation for the steklov-lyapunov system |
publisher |
Інститут математики НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148386 |
citation_txt |
New Variables of Separation for the Steklov-Lyapunov System / A.V. Tsiganov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 27 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT tsiganovav newvariablesofseparationforthesteklovlyapunovsystem |
first_indexed |
2023-05-20T17:30:26Z |
last_indexed |
2023-05-20T17:30:26Z |
_version_ |
1796153447769178112 |