New Variables of Separation for the Steklov-Lyapunov System
A rigid body in an ideal fluid is an important example of Hamiltonian systems on a dual to the semidirect product Lie algebra e(3)=so(3)⋉R³. We present the bi-Hamiltonian structure and the corresponding variables of separation on this phase space for the Steklov-Lyapunov system and it's gyrosta...
Збережено в:
Дата: | 2012 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2012
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148386 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | New Variables of Separation for the Steklov-Lyapunov System / A.V. Tsiganov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 27 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineБудьте першим, хто залишить коментар!