Classification of Non-Affine Non-Hecke Dynamical R-Matrices

A complete classification of non-affine dynamical quantum R-matrices obeying the Gln(C)-Gervais-Neveu-Felder equation is obtained without assuming either Hecke or weak Hecke conditions. More general dynamical dependences are observed. It is shown that any solution is built upon elementary blocks, wh...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Avan, J., Billaud, B., Rollet, G.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148388
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Classification of Non-Affine Non-Hecke Dynamical R-Matrices / J. Avan, B. Billaud, G. Rollet // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148388
record_format dspace
spelling irk-123456789-1483882019-02-19T01:25:44Z Classification of Non-Affine Non-Hecke Dynamical R-Matrices Avan, J. Billaud, B. Rollet, G. A complete classification of non-affine dynamical quantum R-matrices obeying the Gln(C)-Gervais-Neveu-Felder equation is obtained without assuming either Hecke or weak Hecke conditions. More general dynamical dependences are observed. It is shown that any solution is built upon elementary blocks, which individually satisfy the weak Hecke condition. 2012 Article Classification of Non-Affine Non-Hecke Dynamical R-Matrices / J. Avan, B. Billaud, G. Rollet // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 25 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 16T25; 17B37; 81R12; 81R50 DOI: http://dx.doi.org/10.3842/SIGMA.2012.064 http://dspace.nbuv.gov.ua/handle/123456789/148388 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A complete classification of non-affine dynamical quantum R-matrices obeying the Gln(C)-Gervais-Neveu-Felder equation is obtained without assuming either Hecke or weak Hecke conditions. More general dynamical dependences are observed. It is shown that any solution is built upon elementary blocks, which individually satisfy the weak Hecke condition.
format Article
author Avan, J.
Billaud, B.
Rollet, G.
spellingShingle Avan, J.
Billaud, B.
Rollet, G.
Classification of Non-Affine Non-Hecke Dynamical R-Matrices
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Avan, J.
Billaud, B.
Rollet, G.
author_sort Avan, J.
title Classification of Non-Affine Non-Hecke Dynamical R-Matrices
title_short Classification of Non-Affine Non-Hecke Dynamical R-Matrices
title_full Classification of Non-Affine Non-Hecke Dynamical R-Matrices
title_fullStr Classification of Non-Affine Non-Hecke Dynamical R-Matrices
title_full_unstemmed Classification of Non-Affine Non-Hecke Dynamical R-Matrices
title_sort classification of non-affine non-hecke dynamical r-matrices
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148388
citation_txt Classification of Non-Affine Non-Hecke Dynamical R-Matrices / J. Avan, B. Billaud, G. Rollet // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 25 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT avanj classificationofnonaffinenonheckedynamicalrmatrices
AT billaudb classificationofnonaffinenonheckedynamicalrmatrices
AT rolletg classificationofnonaffinenonheckedynamicalrmatrices
first_indexed 2023-05-20T17:30:37Z
last_indexed 2023-05-20T17:30:37Z
_version_ 1796153464191975424