Exponential Formulas and Lie Algebra Type Star Products
Given formal differential operators Fi on polynomial algebra in several variables x₁,…,xn, we discuss finding expressions Kl determined by the equation exp(∑ixiFi)(exp(∑jqjxj))=exp(∑lKlxl) and their applications. The expressions for Kl are related to the coproducts for deformed momenta for the nonco...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2012
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148390 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Exponential Formulas and Lie Algebra Type Star Products / S. Meljanac, Z. Škoda, D. Svrtan // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Given formal differential operators Fi on polynomial algebra in several variables x₁,…,xn, we discuss finding expressions Kl determined by the equation exp(∑ixiFi)(exp(∑jqjxj))=exp(∑lKlxl) and their applications. The expressions for Kl are related to the coproducts for deformed momenta for the noncommutative space-times of Lie algebra type and also appear in the computations with a class of star products. We find combinatorial recursions and derive formal differential equations for finding Kl. We elaborate an example for a Lie algebra su(2), related to a quantum gravity application from the literature. |
---|