Exponential Formulas and Lie Algebra Type Star Products

Given formal differential operators Fi on polynomial algebra in several variables x₁,…,xn, we discuss finding expressions Kl determined by the equation exp(∑ixiFi)(exp(∑jqjxj))=exp(∑lKlxl) and their applications. The expressions for Kl are related to the coproducts for deformed momenta for the nonco...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Meljanac, S., Škoda, Z., Svrtan, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148390
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Exponential Formulas and Lie Algebra Type Star Products / S. Meljanac, Z. Škoda, D. Svrtan // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Given formal differential operators Fi on polynomial algebra in several variables x₁,…,xn, we discuss finding expressions Kl determined by the equation exp(∑ixiFi)(exp(∑jqjxj))=exp(∑lKlxl) and their applications. The expressions for Kl are related to the coproducts for deformed momenta for the noncommutative space-times of Lie algebra type and also appear in the computations with a class of star products. We find combinatorial recursions and derive formal differential equations for finding Kl. We elaborate an example for a Lie algebra su(2), related to a quantum gravity application from the literature.