Exponential Formulas and Lie Algebra Type Star Products

Given formal differential operators Fi on polynomial algebra in several variables x₁,…,xn, we discuss finding expressions Kl determined by the equation exp(∑ixiFi)(exp(∑jqjxj))=exp(∑lKlxl) and their applications. The expressions for Kl are related to the coproducts for deformed momenta for the nonco...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Meljanac, S., Škoda, Z., Svrtan, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148390
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Exponential Formulas and Lie Algebra Type Star Products / S. Meljanac, Z. Škoda, D. Svrtan // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148390
record_format dspace
spelling irk-123456789-1483902019-02-19T01:30:21Z Exponential Formulas and Lie Algebra Type Star Products Meljanac, S. Škoda, Z. Svrtan, D. Given formal differential operators Fi on polynomial algebra in several variables x₁,…,xn, we discuss finding expressions Kl determined by the equation exp(∑ixiFi)(exp(∑jqjxj))=exp(∑lKlxl) and their applications. The expressions for Kl are related to the coproducts for deformed momenta for the noncommutative space-times of Lie algebra type and also appear in the computations with a class of star products. We find combinatorial recursions and derive formal differential equations for finding Kl. We elaborate an example for a Lie algebra su(2), related to a quantum gravity application from the literature. 2012 Article Exponential Formulas and Lie Algebra Type Star Products / S. Meljanac, Z. Škoda, D. Svrtan // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81R60; 16S30; 16S32; 16A58 DOI: http://dx.doi.org/10.3842/SIGMA.2012.013 http://dspace.nbuv.gov.ua/handle/123456789/148390 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Given formal differential operators Fi on polynomial algebra in several variables x₁,…,xn, we discuss finding expressions Kl determined by the equation exp(∑ixiFi)(exp(∑jqjxj))=exp(∑lKlxl) and their applications. The expressions for Kl are related to the coproducts for deformed momenta for the noncommutative space-times of Lie algebra type and also appear in the computations with a class of star products. We find combinatorial recursions and derive formal differential equations for finding Kl. We elaborate an example for a Lie algebra su(2), related to a quantum gravity application from the literature.
format Article
author Meljanac, S.
Škoda, Z.
Svrtan, D.
spellingShingle Meljanac, S.
Škoda, Z.
Svrtan, D.
Exponential Formulas and Lie Algebra Type Star Products
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Meljanac, S.
Škoda, Z.
Svrtan, D.
author_sort Meljanac, S.
title Exponential Formulas and Lie Algebra Type Star Products
title_short Exponential Formulas and Lie Algebra Type Star Products
title_full Exponential Formulas and Lie Algebra Type Star Products
title_fullStr Exponential Formulas and Lie Algebra Type Star Products
title_full_unstemmed Exponential Formulas and Lie Algebra Type Star Products
title_sort exponential formulas and lie algebra type star products
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148390
citation_txt Exponential Formulas and Lie Algebra Type Star Products / S. Meljanac, Z. Škoda, D. Svrtan // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 22 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT meljanacs exponentialformulasandliealgebratypestarproducts
AT skodaz exponentialformulasandliealgebratypestarproducts
AT svrtand exponentialformulasandliealgebratypestarproducts
first_indexed 2023-05-20T17:30:26Z
last_indexed 2023-05-20T17:30:26Z
_version_ 1796153447979941888