Exponential Formulas and Lie Algebra Type Star Products
Given formal differential operators Fi on polynomial algebra in several variables x₁,…,xn, we discuss finding expressions Kl determined by the equation exp(∑ixiFi)(exp(∑jqjxj))=exp(∑lKlxl) and their applications. The expressions for Kl are related to the coproducts for deformed momenta for the nonco...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2012
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148390 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Exponential Formulas and Lie Algebra Type Star Products / S. Meljanac, Z. Škoda, D. Svrtan // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148390 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1483902019-02-19T01:30:21Z Exponential Formulas and Lie Algebra Type Star Products Meljanac, S. Škoda, Z. Svrtan, D. Given formal differential operators Fi on polynomial algebra in several variables x₁,…,xn, we discuss finding expressions Kl determined by the equation exp(∑ixiFi)(exp(∑jqjxj))=exp(∑lKlxl) and their applications. The expressions for Kl are related to the coproducts for deformed momenta for the noncommutative space-times of Lie algebra type and also appear in the computations with a class of star products. We find combinatorial recursions and derive formal differential equations for finding Kl. We elaborate an example for a Lie algebra su(2), related to a quantum gravity application from the literature. 2012 Article Exponential Formulas and Lie Algebra Type Star Products / S. Meljanac, Z. Škoda, D. Svrtan // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81R60; 16S30; 16S32; 16A58 DOI: http://dx.doi.org/10.3842/SIGMA.2012.013 http://dspace.nbuv.gov.ua/handle/123456789/148390 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Given formal differential operators Fi on polynomial algebra in several variables x₁,…,xn, we discuss finding expressions Kl determined by the equation exp(∑ixiFi)(exp(∑jqjxj))=exp(∑lKlxl) and their applications. The expressions for Kl are related to the coproducts for deformed momenta for the noncommutative space-times of Lie algebra type and also appear in the computations with a class of star products. We find combinatorial recursions and derive formal differential equations for finding Kl. We elaborate an example for a Lie algebra su(2), related to a quantum gravity application from the literature. |
format |
Article |
author |
Meljanac, S. Škoda, Z. Svrtan, D. |
spellingShingle |
Meljanac, S. Škoda, Z. Svrtan, D. Exponential Formulas and Lie Algebra Type Star Products Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Meljanac, S. Škoda, Z. Svrtan, D. |
author_sort |
Meljanac, S. |
title |
Exponential Formulas and Lie Algebra Type Star Products |
title_short |
Exponential Formulas and Lie Algebra Type Star Products |
title_full |
Exponential Formulas and Lie Algebra Type Star Products |
title_fullStr |
Exponential Formulas and Lie Algebra Type Star Products |
title_full_unstemmed |
Exponential Formulas and Lie Algebra Type Star Products |
title_sort |
exponential formulas and lie algebra type star products |
publisher |
Інститут математики НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148390 |
citation_txt |
Exponential Formulas and Lie Algebra Type Star Products / S. Meljanac, Z. Škoda, D. Svrtan // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 22 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT meljanacs exponentialformulasandliealgebratypestarproducts AT skodaz exponentialformulasandliealgebratypestarproducts AT svrtand exponentialformulasandliealgebratypestarproducts |
first_indexed |
2023-05-20T17:30:26Z |
last_indexed |
2023-05-20T17:30:26Z |
_version_ |
1796153447979941888 |