Examples of Matrix Factorizations from SYZ

We find matrix factorization corresponding to an anti-diagonal in CP¹×CP¹, and circle fibers in weighted projective lines using the idea of Chan and Leung of Strominger-Yau-Zaslow transformations. For the tear drop orbifolds, we apply this idea to find matrix factorizations for two types of potentia...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Cho, Cheol-Hyun, Hong, H., Lee, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148404
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Examples of Matrix Factorizations from SYZ / Cheol-Hyun Cho, H. Hong, S. Lee // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We find matrix factorization corresponding to an anti-diagonal in CP¹×CP¹, and circle fibers in weighted projective lines using the idea of Chan and Leung of Strominger-Yau-Zaslow transformations. For the tear drop orbifolds, we apply this idea to find matrix factorizations for two types of potential, the usual Hori-Vafa potential or the bulk deformed (orbi)-potential. We also show that the direct sum of anti-diagonal with its shift, is equivalent to the direct sum of central torus fibers with holonomy (1,−1) and (−1,1) in the Fukaya category of CP¹×CP¹, which was predicted by Kapustin and Li from B-model calculations.