Spin Foams and Canonical Quantization

This review is devoted to the analysis of the mutual consistency of the spin foam and canonical loop quantizations in three and four spacetime dimensions. In the three-dimensional context, where the two approaches are in good agreement, we show how the canonical quantization à la Witten of Riemannia...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Alexandrov, S., Geiller, M., Noui, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148408
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Spin Foams and Canonical Quantization / S. Alexandrov, M. Geiller, K. Noui // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 150 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148408
record_format dspace
spelling irk-123456789-1484082019-02-19T01:25:35Z Spin Foams and Canonical Quantization Alexandrov, S. Geiller, M. Noui, K. This review is devoted to the analysis of the mutual consistency of the spin foam and canonical loop quantizations in three and four spacetime dimensions. In the three-dimensional context, where the two approaches are in good agreement, we show how the canonical quantization à la Witten of Riemannian gravity with a positive cosmological constant is related to the Turaev-Viro spin foam model, and how the Ponzano-Regge amplitudes are related to the physical scalar product of Riemannian loop quantum gravity without cosmological constant. In the four-dimensional case, we recall a Lorentz-covariant formulation of loop quantum gravity using projected spin networks, compare it with the new spin foam models, and identify interesting relations and their pitfalls. Finally, we discuss the properties which a spin foam model is expected to possess in order to be consistent with the canonical quantization, and suggest a new model illustrating these results. 2012 Article Spin Foams and Canonical Quantization / S. Alexandrov, M. Geiller, K. Noui // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 150 назв. — англ. 1815-0659 http://dspace.nbuv.gov.ua/handle/123456789/148408 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description This review is devoted to the analysis of the mutual consistency of the spin foam and canonical loop quantizations in three and four spacetime dimensions. In the three-dimensional context, where the two approaches are in good agreement, we show how the canonical quantization à la Witten of Riemannian gravity with a positive cosmological constant is related to the Turaev-Viro spin foam model, and how the Ponzano-Regge amplitudes are related to the physical scalar product of Riemannian loop quantum gravity without cosmological constant. In the four-dimensional case, we recall a Lorentz-covariant formulation of loop quantum gravity using projected spin networks, compare it with the new spin foam models, and identify interesting relations and their pitfalls. Finally, we discuss the properties which a spin foam model is expected to possess in order to be consistent with the canonical quantization, and suggest a new model illustrating these results.
format Article
author Alexandrov, S.
Geiller, M.
Noui, K.
spellingShingle Alexandrov, S.
Geiller, M.
Noui, K.
Spin Foams and Canonical Quantization
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Alexandrov, S.
Geiller, M.
Noui, K.
author_sort Alexandrov, S.
title Spin Foams and Canonical Quantization
title_short Spin Foams and Canonical Quantization
title_full Spin Foams and Canonical Quantization
title_fullStr Spin Foams and Canonical Quantization
title_full_unstemmed Spin Foams and Canonical Quantization
title_sort spin foams and canonical quantization
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148408
citation_txt Spin Foams and Canonical Quantization / S. Alexandrov, M. Geiller, K. Noui // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 150 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT alexandrovs spinfoamsandcanonicalquantization
AT geillerm spinfoamsandcanonicalquantization
AT nouik spinfoamsandcanonicalquantization
first_indexed 2023-05-20T17:30:38Z
last_indexed 2023-05-20T17:30:38Z
_version_ 1796153464720457728