Lagrange Anchor and Characteristic Symmetries of Free Massless Fields

A Poincaré covariant Lagrange anchor is found for the non-Lagrangian relativistic wave equations of Bargmann and Wigner describing free massless fields of spin s>1/2 in four-dimensional Minkowski space. By making use of this Lagrange anchor, we assign a symmetry to each conservation law and perfo...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Kaparulin, D.S., Lyakhovich, S.L., Sharapov, A.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148413
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Lagrange Anchor and Characteristic Symmetries of Free Massless Fields / D.S. Kaparulin, S.L. Lyakhovich, A.A. Sharapov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 32 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148413
record_format dspace
spelling irk-123456789-1484132019-02-19T01:29:37Z Lagrange Anchor and Characteristic Symmetries of Free Massless Fields Kaparulin, D.S. Lyakhovich, S.L. Sharapov, A.A. A Poincaré covariant Lagrange anchor is found for the non-Lagrangian relativistic wave equations of Bargmann and Wigner describing free massless fields of spin s>1/2 in four-dimensional Minkowski space. By making use of this Lagrange anchor, we assign a symmetry to each conservation law and perform the path-integral quantization of the theory. 2012 Article Lagrange Anchor and Characteristic Symmetries of Free Massless Fields / D.S. Kaparulin, S.L. Lyakhovich, A.A. Sharapov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 32 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 70S10; 81T70 DOI: http://dx.doi.org/10.3842/SIGMA.2012.021 http://dspace.nbuv.gov.ua/handle/123456789/148413 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A Poincaré covariant Lagrange anchor is found for the non-Lagrangian relativistic wave equations of Bargmann and Wigner describing free massless fields of spin s>1/2 in four-dimensional Minkowski space. By making use of this Lagrange anchor, we assign a symmetry to each conservation law and perform the path-integral quantization of the theory.
format Article
author Kaparulin, D.S.
Lyakhovich, S.L.
Sharapov, A.A.
spellingShingle Kaparulin, D.S.
Lyakhovich, S.L.
Sharapov, A.A.
Lagrange Anchor and Characteristic Symmetries of Free Massless Fields
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Kaparulin, D.S.
Lyakhovich, S.L.
Sharapov, A.A.
author_sort Kaparulin, D.S.
title Lagrange Anchor and Characteristic Symmetries of Free Massless Fields
title_short Lagrange Anchor and Characteristic Symmetries of Free Massless Fields
title_full Lagrange Anchor and Characteristic Symmetries of Free Massless Fields
title_fullStr Lagrange Anchor and Characteristic Symmetries of Free Massless Fields
title_full_unstemmed Lagrange Anchor and Characteristic Symmetries of Free Massless Fields
title_sort lagrange anchor and characteristic symmetries of free massless fields
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148413
citation_txt Lagrange Anchor and Characteristic Symmetries of Free Massless Fields / D.S. Kaparulin, S.L. Lyakhovich, A.A. Sharapov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 32 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT kaparulinds lagrangeanchorandcharacteristicsymmetriesoffreemasslessfields
AT lyakhovichsl lagrangeanchorandcharacteristicsymmetriesoffreemasslessfields
AT sharapovaa lagrangeanchorandcharacteristicsymmetriesoffreemasslessfields
first_indexed 2023-05-20T17:30:29Z
last_indexed 2023-05-20T17:30:29Z
_version_ 1796153455088238592