Loop Quantum Gravity Vacuum with Nondegenerate Geometry

In loop quantum gravity, states of the gravitational field turn out to be excitations over a vacuum state that is sharply peaked on a degenerate spatial geometry. While this vacuum is singled out as fundamental due to its invariance properties, it is also important to consider states that describe n...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Koslowski, T., Sahlmann, H.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148420
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Loop Quantum Gravity Vacuum with Nondegenerate Geometry / T. Koslowski, H. Sahlmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 31 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148420
record_format dspace
spelling irk-123456789-1484202019-02-19T01:30:55Z Loop Quantum Gravity Vacuum with Nondegenerate Geometry Koslowski, T. Sahlmann, H. In loop quantum gravity, states of the gravitational field turn out to be excitations over a vacuum state that is sharply peaked on a degenerate spatial geometry. While this vacuum is singled out as fundamental due to its invariance properties, it is also important to consider states that describe non-degenerate geometries. Such states have features of Bose condensate ground states. We discuss their construction for the Lie algebra as well as the Weyl algebra setting, and point out possible applications in effective field theory, Loop Quantum Cosmology, as well as further generalizations. 2012 Article Loop Quantum Gravity Vacuum with Nondegenerate Geometry / T. Koslowski, H. Sahlmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 31 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 83C45; 81R15; 46L30; 28C20 DOI: http://dx.doi.org/10.3842/SIGMA.2012.026 http://dspace.nbuv.gov.ua/handle/123456789/148420 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In loop quantum gravity, states of the gravitational field turn out to be excitations over a vacuum state that is sharply peaked on a degenerate spatial geometry. While this vacuum is singled out as fundamental due to its invariance properties, it is also important to consider states that describe non-degenerate geometries. Such states have features of Bose condensate ground states. We discuss their construction for the Lie algebra as well as the Weyl algebra setting, and point out possible applications in effective field theory, Loop Quantum Cosmology, as well as further generalizations.
format Article
author Koslowski, T.
Sahlmann, H.
spellingShingle Koslowski, T.
Sahlmann, H.
Loop Quantum Gravity Vacuum with Nondegenerate Geometry
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Koslowski, T.
Sahlmann, H.
author_sort Koslowski, T.
title Loop Quantum Gravity Vacuum with Nondegenerate Geometry
title_short Loop Quantum Gravity Vacuum with Nondegenerate Geometry
title_full Loop Quantum Gravity Vacuum with Nondegenerate Geometry
title_fullStr Loop Quantum Gravity Vacuum with Nondegenerate Geometry
title_full_unstemmed Loop Quantum Gravity Vacuum with Nondegenerate Geometry
title_sort loop quantum gravity vacuum with nondegenerate geometry
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148420
citation_txt Loop Quantum Gravity Vacuum with Nondegenerate Geometry / T. Koslowski, H. Sahlmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 31 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT koslowskit loopquantumgravityvacuumwithnondegenerategeometry
AT sahlmannh loopquantumgravityvacuumwithnondegenerategeometry
first_indexed 2023-05-20T17:30:39Z
last_indexed 2023-05-20T17:30:39Z
_version_ 1796153455828533248