2025-02-23T10:11:56-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-148427%22&qt=morelikethis&rows=5
2025-02-23T10:11:56-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-148427%22&qt=morelikethis&rows=5
2025-02-23T10:11:56-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T10:11:56-05:00 DEBUG: Deserialized SOLR response

A Note on the First Integrals of Vector Fields with Integrating Factors and Normalizers

We prove a sufficient condition for the existence of explicit first integrals for vector fields which admit an integrating factor. This theorem recovers and extends previous results in the literature on the integrability of vector fields which are volume preserving and possess nontrivial normalizers...

Full description

Saved in:
Bibliographic Details
Main Authors: Llibre, J., Peralta-Salas, D.
Format: Article
Language:English
Published: Інститут математики НАН України 2012
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/148427
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-148427
record_format dspace
spelling irk-123456789-1484272019-02-19T01:23:33Z A Note on the First Integrals of Vector Fields with Integrating Factors and Normalizers Llibre, J. Peralta-Salas, D. We prove a sufficient condition for the existence of explicit first integrals for vector fields which admit an integrating factor. This theorem recovers and extends previous results in the literature on the integrability of vector fields which are volume preserving and possess nontrivial normalizers. Our approach is geometric and coordinate-free and hence it works on any smooth orientable manifold. 2012 Article A Note on the First Integrals of Vector Fields with Integrating Factors and Normalizers / J. Llibre, D. Peralta-Salas // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 21 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 34C05; 34A34; 34C14 DOI: http://dx.doi.org/10.3842/SIGMA.2012.035 http://dspace.nbuv.gov.ua/handle/123456789/148427 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We prove a sufficient condition for the existence of explicit first integrals for vector fields which admit an integrating factor. This theorem recovers and extends previous results in the literature on the integrability of vector fields which are volume preserving and possess nontrivial normalizers. Our approach is geometric and coordinate-free and hence it works on any smooth orientable manifold.
format Article
author Llibre, J.
Peralta-Salas, D.
spellingShingle Llibre, J.
Peralta-Salas, D.
A Note on the First Integrals of Vector Fields with Integrating Factors and Normalizers
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Llibre, J.
Peralta-Salas, D.
author_sort Llibre, J.
title A Note on the First Integrals of Vector Fields with Integrating Factors and Normalizers
title_short A Note on the First Integrals of Vector Fields with Integrating Factors and Normalizers
title_full A Note on the First Integrals of Vector Fields with Integrating Factors and Normalizers
title_fullStr A Note on the First Integrals of Vector Fields with Integrating Factors and Normalizers
title_full_unstemmed A Note on the First Integrals of Vector Fields with Integrating Factors and Normalizers
title_sort note on the first integrals of vector fields with integrating factors and normalizers
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148427
citation_txt A Note on the First Integrals of Vector Fields with Integrating Factors and Normalizers / J. Llibre, D. Peralta-Salas // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 21 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT llibrej anoteonthefirstintegralsofvectorfieldswithintegratingfactorsandnormalizers
AT peraltasalasd anoteonthefirstintegralsofvectorfieldswithintegratingfactorsandnormalizers
AT llibrej noteonthefirstintegralsofvectorfieldswithintegratingfactorsandnormalizers
AT peraltasalasd noteonthefirstintegralsofvectorfieldswithintegratingfactorsandnormalizers
first_indexed 2023-05-20T17:30:40Z
last_indexed 2023-05-20T17:30:40Z
_version_ 1796153456456630272