CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae

We develop the theory of CKP hierarchy introduced in the papers of Kyoto school [Date E., Jimbo M., Kashiwara M., Miwa T., J. Phys. Soc. Japan 50 (1981), 3806-3812] (see also [Kac V.G., van de Leur J.W., Adv. Ser. Math. Phys., Vol. 7, World Sci. Publ., Teaneck, NJ, 1989, 369-406]). We present approp...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: van de Leur, J. W., Orlov, A.Y., Shiota, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148441
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae / J.W. van de Leur, A.Y. Orlov, T. Shiota // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148441
record_format dspace
spelling irk-123456789-1484412019-02-19T01:26:22Z CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae van de Leur, J. W. Orlov, A.Y. Shiota, T. We develop the theory of CKP hierarchy introduced in the papers of Kyoto school [Date E., Jimbo M., Kashiwara M., Miwa T., J. Phys. Soc. Japan 50 (1981), 3806-3812] (see also [Kac V.G., van de Leur J.W., Adv. Ser. Math. Phys., Vol. 7, World Sci. Publ., Teaneck, NJ, 1989, 369-406]). We present appropriate bosonization formulae. We show that in the context of the CKP theory certain orthogonal polynomials appear. These polynomials are polynomial both in even and odd (in Grassmannian sense) variables. 2012 Article CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae / J.W. van de Leur, A.Y. Orlov, T. Shiota // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B65; 17B67; 17B69; 20G43; 81R12 DOI: http://dx.doi.org/10.3842/SIGMA.2012.036 http://dspace.nbuv.gov.ua/handle/123456789/148441 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We develop the theory of CKP hierarchy introduced in the papers of Kyoto school [Date E., Jimbo M., Kashiwara M., Miwa T., J. Phys. Soc. Japan 50 (1981), 3806-3812] (see also [Kac V.G., van de Leur J.W., Adv. Ser. Math. Phys., Vol. 7, World Sci. Publ., Teaneck, NJ, 1989, 369-406]). We present appropriate bosonization formulae. We show that in the context of the CKP theory certain orthogonal polynomials appear. These polynomials are polynomial both in even and odd (in Grassmannian sense) variables.
format Article
author van de Leur, J. W.
Orlov, A.Y.
Shiota, T.
spellingShingle van de Leur, J. W.
Orlov, A.Y.
Shiota, T.
CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae
Symmetry, Integrability and Geometry: Methods and Applications
author_facet van de Leur, J. W.
Orlov, A.Y.
Shiota, T.
author_sort van de Leur, J. W.
title CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae
title_short CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae
title_full CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae
title_fullStr CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae
title_full_unstemmed CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae
title_sort ckp hierarchy, bosonic tau function and bosonization formulae
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148441
citation_txt CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae / J.W. van de Leur, A.Y. Orlov, T. Shiota // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT vandeleurjw ckphierarchybosonictaufunctionandbosonizationformulae
AT orlovay ckphierarchybosonictaufunctionandbosonizationformulae
AT shiotat ckphierarchybosonictaufunctionandbosonizationformulae
first_indexed 2023-05-20T17:30:41Z
last_indexed 2023-05-20T17:30:41Z
_version_ 1796153457825021952