CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae
We develop the theory of CKP hierarchy introduced in the papers of Kyoto school [Date E., Jimbo M., Kashiwara M., Miwa T., J. Phys. Soc. Japan 50 (1981), 3806-3812] (see also [Kac V.G., van de Leur J.W., Adv. Ser. Math. Phys., Vol. 7, World Sci. Publ., Teaneck, NJ, 1989, 369-406]). We present approp...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2012
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148441 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae / J.W. van de Leur, A.Y. Orlov, T. Shiota // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148441 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1484412019-02-19T01:26:22Z CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae van de Leur, J. W. Orlov, A.Y. Shiota, T. We develop the theory of CKP hierarchy introduced in the papers of Kyoto school [Date E., Jimbo M., Kashiwara M., Miwa T., J. Phys. Soc. Japan 50 (1981), 3806-3812] (see also [Kac V.G., van de Leur J.W., Adv. Ser. Math. Phys., Vol. 7, World Sci. Publ., Teaneck, NJ, 1989, 369-406]). We present appropriate bosonization formulae. We show that in the context of the CKP theory certain orthogonal polynomials appear. These polynomials are polynomial both in even and odd (in Grassmannian sense) variables. 2012 Article CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae / J.W. van de Leur, A.Y. Orlov, T. Shiota // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B65; 17B67; 17B69; 20G43; 81R12 DOI: http://dx.doi.org/10.3842/SIGMA.2012.036 http://dspace.nbuv.gov.ua/handle/123456789/148441 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We develop the theory of CKP hierarchy introduced in the papers of Kyoto school [Date E., Jimbo M., Kashiwara M., Miwa T., J. Phys. Soc. Japan 50 (1981), 3806-3812] (see also [Kac V.G., van de Leur J.W., Adv. Ser. Math. Phys., Vol. 7, World Sci. Publ., Teaneck, NJ, 1989, 369-406]). We present appropriate bosonization formulae. We show that in the context of the CKP theory certain orthogonal polynomials appear. These polynomials are polynomial both in even and odd (in Grassmannian sense) variables. |
format |
Article |
author |
van de Leur, J. W. Orlov, A.Y. Shiota, T. |
spellingShingle |
van de Leur, J. W. Orlov, A.Y. Shiota, T. CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
van de Leur, J. W. Orlov, A.Y. Shiota, T. |
author_sort |
van de Leur, J. W. |
title |
CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae |
title_short |
CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae |
title_full |
CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae |
title_fullStr |
CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae |
title_full_unstemmed |
CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae |
title_sort |
ckp hierarchy, bosonic tau function and bosonization formulae |
publisher |
Інститут математики НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148441 |
citation_txt |
CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae / J.W. van de Leur, A.Y. Orlov, T. Shiota // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT vandeleurjw ckphierarchybosonictaufunctionandbosonizationformulae AT orlovay ckphierarchybosonictaufunctionandbosonizationformulae AT shiotat ckphierarchybosonictaufunctionandbosonizationformulae |
first_indexed |
2023-05-20T17:30:41Z |
last_indexed |
2023-05-20T17:30:41Z |
_version_ |
1796153457825021952 |