Some Remarks on Very-Well-Poised ₈∅₇ Series
Nonpolynomial basic hypergeometric eigenfunctions of the Askey-Wilson second order difference operator are known to be expressible as very-well-poised ₈∅₇ series. In this paper we use this fact to derive various basic hypergeometric and theta function identities. We relate most of them to identities...
Збережено в:
Дата: | 2012 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2012
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148446 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Some Remarks on Very-Well-Poised ₈∅₇ Series / J.V. Stokman // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 26 назв. — англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Nonpolynomial basic hypergeometric eigenfunctions of the Askey-Wilson second order difference operator are known to be expressible as very-well-poised ₈∅₇ series. In this paper we use this fact to derive various basic hypergeometric and theta function identities. We relate most of them to identities from the existing literature on basic hypergeometric series. This leads for example to a new derivation of a known quadratic transformation formula for very-well-poised ₈∅₇ series. We also provide a link to Chalykh's theory on (rank one, BC type) Baker-Akhiezer functions. |
---|