Some Remarks on Very-Well-Poised ₈∅₇ Series

Nonpolynomial basic hypergeometric eigenfunctions of the Askey-Wilson second order difference operator are known to be expressible as very-well-poised ₈∅₇ series. In this paper we use this fact to derive various basic hypergeometric and theta function identities. We relate most of them to identities...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автор: Stokman, J.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148446
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Some Remarks on Very-Well-Poised ₈∅₇ Series / J.V. Stokman // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 26 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148446
record_format dspace
spelling irk-123456789-1484462019-02-19T01:23:16Z Some Remarks on Very-Well-Poised ₈∅₇ Series Stokman, J.V. Nonpolynomial basic hypergeometric eigenfunctions of the Askey-Wilson second order difference operator are known to be expressible as very-well-poised ₈∅₇ series. In this paper we use this fact to derive various basic hypergeometric and theta function identities. We relate most of them to identities from the existing literature on basic hypergeometric series. This leads for example to a new derivation of a known quadratic transformation formula for very-well-poised ₈∅₇ series. We also provide a link to Chalykh's theory on (rank one, BC type) Baker-Akhiezer functions. 2012 Article Some Remarks on Very-Well-Poised ₈∅₇ Series / J.V. Stokman // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 26 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33D15; 33D45 DOI: http://dx.doi.org/10.3842/SIGMA.2012.039 http://dspace.nbuv.gov.ua/handle/123456789/148446 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Nonpolynomial basic hypergeometric eigenfunctions of the Askey-Wilson second order difference operator are known to be expressible as very-well-poised ₈∅₇ series. In this paper we use this fact to derive various basic hypergeometric and theta function identities. We relate most of them to identities from the existing literature on basic hypergeometric series. This leads for example to a new derivation of a known quadratic transformation formula for very-well-poised ₈∅₇ series. We also provide a link to Chalykh's theory on (rank one, BC type) Baker-Akhiezer functions.
format Article
author Stokman, J.V.
spellingShingle Stokman, J.V.
Some Remarks on Very-Well-Poised ₈∅₇ Series
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Stokman, J.V.
author_sort Stokman, J.V.
title Some Remarks on Very-Well-Poised ₈∅₇ Series
title_short Some Remarks on Very-Well-Poised ₈∅₇ Series
title_full Some Remarks on Very-Well-Poised ₈∅₇ Series
title_fullStr Some Remarks on Very-Well-Poised ₈∅₇ Series
title_full_unstemmed Some Remarks on Very-Well-Poised ₈∅₇ Series
title_sort some remarks on very-well-poised ₈∅₇ series
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148446
citation_txt Some Remarks on Very-Well-Poised ₈∅₇ Series / J.V. Stokman // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 26 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT stokmanjv someremarksonverywellpoised87series
first_indexed 2023-05-20T17:30:42Z
last_indexed 2023-05-20T17:30:42Z
_version_ 1796153458357698560