Discrete Fourier Analysis and Chebyshev Polynomials with G₂ Group

The discrete Fourier analysis on the 30°-60°-90° triangle is deduced from the corresponding results on the regular hexagon by considering functions invariant under the group G₂, which leads to the definition of four families generalized Chebyshev polynomials. The study of these polynomials leads to...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Li, H., Sun, J., Xu, Y.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148448
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Discrete Fourier Analysis and Chebyshev Polynomials with G₂ Group / H. Li, J. Sun, Y. Xu // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148448
record_format dspace
spelling irk-123456789-1484482019-02-19T01:27:28Z Discrete Fourier Analysis and Chebyshev Polynomials with G₂ Group Li, H. Sun, J. Xu, Y. The discrete Fourier analysis on the 30°-60°-90° triangle is deduced from the corresponding results on the regular hexagon by considering functions invariant under the group G₂, which leads to the definition of four families generalized Chebyshev polynomials. The study of these polynomials leads to a Sturm-Liouville eigenvalue problem that contains two parameters, whose solutions are analogues of the Jacobi polynomials. Under a concept of m-degree and by introducing a new ordering among monomials, these polynomials are shown to share properties of the ordinary orthogonal polynomials. In particular, their common zeros generate cubature rules of Gauss type. 2012 Article Discrete Fourier Analysis and Chebyshev Polynomials with G₂ Group / H. Li, J. Sun, Y. Xu // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 41A05; 41A10 DOI: http://dx.doi.org/10.3842/SIGMA.2012.067 http://dspace.nbuv.gov.ua/handle/123456789/148448 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The discrete Fourier analysis on the 30°-60°-90° triangle is deduced from the corresponding results on the regular hexagon by considering functions invariant under the group G₂, which leads to the definition of four families generalized Chebyshev polynomials. The study of these polynomials leads to a Sturm-Liouville eigenvalue problem that contains two parameters, whose solutions are analogues of the Jacobi polynomials. Under a concept of m-degree and by introducing a new ordering among monomials, these polynomials are shown to share properties of the ordinary orthogonal polynomials. In particular, their common zeros generate cubature rules of Gauss type.
format Article
author Li, H.
Sun, J.
Xu, Y.
spellingShingle Li, H.
Sun, J.
Xu, Y.
Discrete Fourier Analysis and Chebyshev Polynomials with G₂ Group
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Li, H.
Sun, J.
Xu, Y.
author_sort Li, H.
title Discrete Fourier Analysis and Chebyshev Polynomials with G₂ Group
title_short Discrete Fourier Analysis and Chebyshev Polynomials with G₂ Group
title_full Discrete Fourier Analysis and Chebyshev Polynomials with G₂ Group
title_fullStr Discrete Fourier Analysis and Chebyshev Polynomials with G₂ Group
title_full_unstemmed Discrete Fourier Analysis and Chebyshev Polynomials with G₂ Group
title_sort discrete fourier analysis and chebyshev polynomials with g₂ group
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148448
citation_txt Discrete Fourier Analysis and Chebyshev Polynomials with G₂ Group / H. Li, J. Sun, Y. Xu // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT lih discretefourieranalysisandchebyshevpolynomialswithg2group
AT sunj discretefourieranalysisandchebyshevpolynomialswithg2group
AT xuy discretefourieranalysisandchebyshevpolynomialswithg2group
first_indexed 2023-05-20T17:30:42Z
last_indexed 2023-05-20T17:30:42Z
_version_ 1796153465252085760