A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction

A 2+1-dimensional anisentropic magnetogasdynamic system with a polytropic gas law is shown to admit an integrable elliptic vortex reduction when γ=2 to a nonlinear dynamical subsystem with underlying integrable Hamiltonian-Ermakov structure. Exact solutions of the magnetogasdynamic system are thereb...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: An, H., Rogers, C.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148449
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction / H. An, C. Rogers // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148449
record_format dspace
spelling irk-123456789-1484492019-02-19T01:25:50Z A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction An, H. Rogers, C. A 2+1-dimensional anisentropic magnetogasdynamic system with a polytropic gas law is shown to admit an integrable elliptic vortex reduction when γ=2 to a nonlinear dynamical subsystem with underlying integrable Hamiltonian-Ermakov structure. Exact solutions of the magnetogasdynamic system are thereby obtained which describe a rotating elliptic plasma cylinder. The semi-axes of the elliptical cross-section, remarkably, satisfy a Ermakov-Ray-Reid system. 2012 Article A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction / H. An, C. Rogers // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 34A34; 35A25 DOI: http://dx.doi.org/10.3842/SIGMA.2012.057 http://dspace.nbuv.gov.ua/handle/123456789/148449 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A 2+1-dimensional anisentropic magnetogasdynamic system with a polytropic gas law is shown to admit an integrable elliptic vortex reduction when γ=2 to a nonlinear dynamical subsystem with underlying integrable Hamiltonian-Ermakov structure. Exact solutions of the magnetogasdynamic system are thereby obtained which describe a rotating elliptic plasma cylinder. The semi-axes of the elliptical cross-section, remarkably, satisfy a Ermakov-Ray-Reid system.
format Article
author An, H.
Rogers, C.
spellingShingle An, H.
Rogers, C.
A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
Symmetry, Integrability and Geometry: Methods and Applications
author_facet An, H.
Rogers, C.
author_sort An, H.
title A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
title_short A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
title_full A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
title_fullStr A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
title_full_unstemmed A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
title_sort 2+1-dimensional non-isothermal magnetogasdynamic system. hamiltonian-ermakov integrable reduction
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148449
citation_txt A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction / H. An, C. Rogers // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 22 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT anh a21dimensionalnonisothermalmagnetogasdynamicsystemhamiltonianermakovintegrablereduction
AT rogersc a21dimensionalnonisothermalmagnetogasdynamicsystemhamiltonianermakovintegrablereduction
AT anh 21dimensionalnonisothermalmagnetogasdynamicsystemhamiltonianermakovintegrablereduction
AT rogersc 21dimensionalnonisothermalmagnetogasdynamicsystemhamiltonianermakovintegrablereduction
first_indexed 2023-05-20T17:30:42Z
last_indexed 2023-05-20T17:30:42Z
_version_ 1796153465356943360