A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
A 2+1-dimensional anisentropic magnetogasdynamic system with a polytropic gas law is shown to admit an integrable elliptic vortex reduction when γ=2 to a nonlinear dynamical subsystem with underlying integrable Hamiltonian-Ermakov structure. Exact solutions of the magnetogasdynamic system are thereb...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2012
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148449 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction / H. An, C. Rogers // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148449 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1484492019-02-19T01:25:50Z A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction An, H. Rogers, C. A 2+1-dimensional anisentropic magnetogasdynamic system with a polytropic gas law is shown to admit an integrable elliptic vortex reduction when γ=2 to a nonlinear dynamical subsystem with underlying integrable Hamiltonian-Ermakov structure. Exact solutions of the magnetogasdynamic system are thereby obtained which describe a rotating elliptic plasma cylinder. The semi-axes of the elliptical cross-section, remarkably, satisfy a Ermakov-Ray-Reid system. 2012 Article A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction / H. An, C. Rogers // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 34A34; 35A25 DOI: http://dx.doi.org/10.3842/SIGMA.2012.057 http://dspace.nbuv.gov.ua/handle/123456789/148449 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A 2+1-dimensional anisentropic magnetogasdynamic system with a polytropic gas law is shown to admit an integrable elliptic vortex reduction when γ=2 to a nonlinear dynamical subsystem with underlying integrable Hamiltonian-Ermakov structure. Exact solutions of the magnetogasdynamic system are thereby obtained which describe a rotating elliptic plasma cylinder. The semi-axes of the elliptical cross-section, remarkably, satisfy a Ermakov-Ray-Reid system. |
format |
Article |
author |
An, H. Rogers, C. |
spellingShingle |
An, H. Rogers, C. A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
An, H. Rogers, C. |
author_sort |
An, H. |
title |
A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction |
title_short |
A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction |
title_full |
A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction |
title_fullStr |
A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction |
title_full_unstemmed |
A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction |
title_sort |
2+1-dimensional non-isothermal magnetogasdynamic system. hamiltonian-ermakov integrable reduction |
publisher |
Інститут математики НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148449 |
citation_txt |
A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction / H. An, C. Rogers // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 22 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT anh a21dimensionalnonisothermalmagnetogasdynamicsystemhamiltonianermakovintegrablereduction AT rogersc a21dimensionalnonisothermalmagnetogasdynamicsystemhamiltonianermakovintegrablereduction AT anh 21dimensionalnonisothermalmagnetogasdynamicsystemhamiltonianermakovintegrablereduction AT rogersc 21dimensionalnonisothermalmagnetogasdynamicsystemhamiltonianermakovintegrablereduction |
first_indexed |
2023-05-20T17:30:42Z |
last_indexed |
2023-05-20T17:30:42Z |
_version_ |
1796153465356943360 |