Recent Developments in (0,2) Mirror Symmetry

Mirror symmetry of the type II string has a beautiful generalization to the heterotic string. This generalization, known as (0,2) mirror symmetry, is a field still largely in its infancy. We describe recent developments including the ideas behind quantum sheaf cohomology, the mirror map for deformat...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Melnikov, I., Sethi, S., Sharpe, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148451
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Recent Developments in (0,2) Mirror Symmetry / I. Melnikov, S. Sethi, E. Sharpe // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 53 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Mirror symmetry of the type II string has a beautiful generalization to the heterotic string. This generalization, known as (0,2) mirror symmetry, is a field still largely in its infancy. We describe recent developments including the ideas behind quantum sheaf cohomology, the mirror map for deformations of (2,2) mirrors, the construction of mirror pairs from worldsheet duality, as well as an overview of some of the many open questions. The (0,2) mirrors of Hirzebruch surfaces are presented as a new example.