Recent Developments in (0,2) Mirror Symmetry

Mirror symmetry of the type II string has a beautiful generalization to the heterotic string. This generalization, known as (0,2) mirror symmetry, is a field still largely in its infancy. We describe recent developments including the ideas behind quantum sheaf cohomology, the mirror map for deformat...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Melnikov, I., Sethi, S., Sharpe, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148451
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Recent Developments in (0,2) Mirror Symmetry / I. Melnikov, S. Sethi, E. Sharpe // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 53 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148451
record_format dspace
spelling irk-123456789-1484512019-02-19T01:27:08Z Recent Developments in (0,2) Mirror Symmetry Melnikov, I. Sethi, S. Sharpe, E. Mirror symmetry of the type II string has a beautiful generalization to the heterotic string. This generalization, known as (0,2) mirror symmetry, is a field still largely in its infancy. We describe recent developments including the ideas behind quantum sheaf cohomology, the mirror map for deformations of (2,2) mirrors, the construction of mirror pairs from worldsheet duality, as well as an overview of some of the many open questions. The (0,2) mirrors of Hirzebruch surfaces are presented as a new example. 2012 Article Recent Developments in (0,2) Mirror Symmetry / I. Melnikov, S. Sethi, E. Sharpe // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 53 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 32L10; 81T20; 14N35 DOI: http://dx.doi.org/10.3842/SIGMA.2012.068 http://dspace.nbuv.gov.ua/handle/123456789/148451 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Mirror symmetry of the type II string has a beautiful generalization to the heterotic string. This generalization, known as (0,2) mirror symmetry, is a field still largely in its infancy. We describe recent developments including the ideas behind quantum sheaf cohomology, the mirror map for deformations of (2,2) mirrors, the construction of mirror pairs from worldsheet duality, as well as an overview of some of the many open questions. The (0,2) mirrors of Hirzebruch surfaces are presented as a new example.
format Article
author Melnikov, I.
Sethi, S.
Sharpe, E.
spellingShingle Melnikov, I.
Sethi, S.
Sharpe, E.
Recent Developments in (0,2) Mirror Symmetry
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Melnikov, I.
Sethi, S.
Sharpe, E.
author_sort Melnikov, I.
title Recent Developments in (0,2) Mirror Symmetry
title_short Recent Developments in (0,2) Mirror Symmetry
title_full Recent Developments in (0,2) Mirror Symmetry
title_fullStr Recent Developments in (0,2) Mirror Symmetry
title_full_unstemmed Recent Developments in (0,2) Mirror Symmetry
title_sort recent developments in (0,2) mirror symmetry
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148451
citation_txt Recent Developments in (0,2) Mirror Symmetry / I. Melnikov, S. Sethi, E. Sharpe // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 53 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT melnikovi recentdevelopmentsin02mirrorsymmetry
AT sethis recentdevelopmentsin02mirrorsymmetry
AT sharpee recentdevelopmentsin02mirrorsymmetry
first_indexed 2023-05-20T17:30:43Z
last_indexed 2023-05-20T17:30:43Z
_version_ 1796153465461800960