2025-02-22T17:36:27-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-148452%22&qt=morelikethis&rows=5
2025-02-22T17:36:27-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-148452%22&qt=morelikethis&rows=5
2025-02-22T17:36:27-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T17:36:27-05:00 DEBUG: Deserialized SOLR response
Harmonic Oscillator SUSY Partners and Evolution Loops
Supersymmetric quantum mechanics is a powerful tool for generating exactly solvable potentials departing from a given initial one. If applied to the harmonic oscillator, a family of Hamiltonians ruled by polynomial Heisenberg algebras is obtained. In this paper it will be shown that the SUSY partner...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2012
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/148452 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-148452 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1484522019-02-19T01:23:18Z Harmonic Oscillator SUSY Partners and Evolution Loops Fernández, D.J. Supersymmetric quantum mechanics is a powerful tool for generating exactly solvable potentials departing from a given initial one. If applied to the harmonic oscillator, a family of Hamiltonians ruled by polynomial Heisenberg algebras is obtained. In this paper it will be shown that the SUSY partner Hamiltonians of the harmonic oscillator can produce evolution loops. The corresponding geometric phases will be as well studied. 2012 Article Harmonic Oscillator SUSY Partners and Evolution Loops / D.J. Fernández // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 60 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81Q60; 81Q05; 81Q70 DOI: http://dx.doi.org/10.3842/SIGMA.2012.041 http://dspace.nbuv.gov.ua/handle/123456789/148452 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Supersymmetric quantum mechanics is a powerful tool for generating exactly solvable potentials departing from a given initial one. If applied to the harmonic oscillator, a family of Hamiltonians ruled by polynomial Heisenberg algebras is obtained. In this paper it will be shown that the SUSY partner Hamiltonians of the harmonic oscillator can produce evolution loops. The corresponding geometric phases will be as well studied. |
format |
Article |
author |
Fernández, D.J. |
spellingShingle |
Fernández, D.J. Harmonic Oscillator SUSY Partners and Evolution Loops Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Fernández, D.J. |
author_sort |
Fernández, D.J. |
title |
Harmonic Oscillator SUSY Partners and Evolution Loops |
title_short |
Harmonic Oscillator SUSY Partners and Evolution Loops |
title_full |
Harmonic Oscillator SUSY Partners and Evolution Loops |
title_fullStr |
Harmonic Oscillator SUSY Partners and Evolution Loops |
title_full_unstemmed |
Harmonic Oscillator SUSY Partners and Evolution Loops |
title_sort |
harmonic oscillator susy partners and evolution loops |
publisher |
Інститут математики НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148452 |
citation_txt |
Harmonic Oscillator SUSY Partners and Evolution Loops / D.J. Fernández // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 60 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT fernandezdj harmonicoscillatorsusypartnersandevolutionloops |
first_indexed |
2023-05-20T17:30:43Z |
last_indexed |
2023-05-20T17:30:43Z |
_version_ |
1796153458569510912 |