Spectral Analysis of Certain Schrödinger Operators

The J-matrix method is extended to difference and q-difference operators and is applied to several explicit differential, difference, q-difference and second order Askey-Wilson type operators. The spectrum and the spectral measures are discussed in each case and the corresponding eigenfunction expan...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Ismail, Mourad E.H., Koelink, E
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148463
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Spectral Analysis of Certain Schrödinger Operators / Mourad E.H. Ismail, E. Koelink // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 40 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148463
record_format dspace
spelling irk-123456789-1484632019-02-19T01:24:47Z Spectral Analysis of Certain Schrödinger Operators Ismail, Mourad E.H. Koelink, E The J-matrix method is extended to difference and q-difference operators and is applied to several explicit differential, difference, q-difference and second order Askey-Wilson type operators. The spectrum and the spectral measures are discussed in each case and the corresponding eigenfunction expansion is written down explicitly in most cases. In some cases we encounter new orthogonal polynomials with explicit three term recurrence relations where nothing is known about their explicit representations or orthogonality measures. Each model we analyze is a discrete quantum mechanical model in the sense of Odake and Sasaki [J. Phys. A: Math. Theor. 44 (2011), 353001, 47 pages]. 2012 Article Spectral Analysis of Certain Schrödinger Operators / Mourad E.H. Ismail, E. Koelink // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 40 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 30E05; 33C45; 39A10; 42C05; 44A60 DOI: http://dx.doi.org/10.3842/SIGMA.2012.061 http://dspace.nbuv.gov.ua/handle/123456789/148463 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The J-matrix method is extended to difference and q-difference operators and is applied to several explicit differential, difference, q-difference and second order Askey-Wilson type operators. The spectrum and the spectral measures are discussed in each case and the corresponding eigenfunction expansion is written down explicitly in most cases. In some cases we encounter new orthogonal polynomials with explicit three term recurrence relations where nothing is known about their explicit representations or orthogonality measures. Each model we analyze is a discrete quantum mechanical model in the sense of Odake and Sasaki [J. Phys. A: Math. Theor. 44 (2011), 353001, 47 pages].
format Article
author Ismail, Mourad E.H.
Koelink, E
spellingShingle Ismail, Mourad E.H.
Koelink, E
Spectral Analysis of Certain Schrödinger Operators
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Ismail, Mourad E.H.
Koelink, E
author_sort Ismail, Mourad E.H.
title Spectral Analysis of Certain Schrödinger Operators
title_short Spectral Analysis of Certain Schrödinger Operators
title_full Spectral Analysis of Certain Schrödinger Operators
title_fullStr Spectral Analysis of Certain Schrödinger Operators
title_full_unstemmed Spectral Analysis of Certain Schrödinger Operators
title_sort spectral analysis of certain schrödinger operators
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148463
citation_txt Spectral Analysis of Certain Schrödinger Operators / Mourad E.H. Ismail, E. Koelink // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 40 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT ismailmouradeh spectralanalysisofcertainschrodingeroperators
AT koelinke spectralanalysisofcertainschrodingeroperators
first_indexed 2023-05-20T17:30:44Z
last_indexed 2023-05-20T17:30:44Z
_version_ 1796153465777422336