Affine and Finite Lie Algebras and Integrable Toda Field Equations on Discrete Space-Time

Difference-difference systems are suggested corresponding to the Cartan matrices of any simple or affine Lie algebra. In the cases of the algebras AN, BN, CN, G₂, D₃, A₁⁽¹⁾, A₂⁽²⁾, DN⁽²⁾ these systems are proved to be integrable. For the systems corresponding to the algebras A₂, A₁⁽¹⁾, A₂⁽²⁾ genera...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Garifullin, R., Habibullin, I., Yangubaeva, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148464
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Affine and Finite Lie Algebras and Integrable Toda Field Equations on Discrete Space-Time / R. Garifullin, I. Habibullin, M. Yangubaeva // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 41 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Difference-difference systems are suggested corresponding to the Cartan matrices of any simple or affine Lie algebra. In the cases of the algebras AN, BN, CN, G₂, D₃, A₁⁽¹⁾, A₂⁽²⁾, DN⁽²⁾ these systems are proved to be integrable. For the systems corresponding to the algebras A₂, A₁⁽¹⁾, A₂⁽²⁾ generalized symmetries are found. For the systems A₂, B₂, C₂, G₂, D₃ complete sets of independent integrals are found. The Lax representation for the difference-difference systems corresponding to AN, BN, CN, A₁⁽¹⁾,DN⁽²⁾ are presented.