Affine and Finite Lie Algebras and Integrable Toda Field Equations on Discrete Space-Time
Difference-difference systems are suggested corresponding to the Cartan matrices of any simple or affine Lie algebra. In the cases of the algebras AN, BN, CN, G₂, D₃, A₁⁽¹⁾, A₂⁽²⁾, DN⁽²⁾ these systems are proved to be integrable. For the systems corresponding to the algebras A₂, A₁⁽¹⁾, A₂⁽²⁾ genera...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2012
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148464 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Affine and Finite Lie Algebras and Integrable Toda Field Equations on Discrete Space-Time / R. Garifullin, I. Habibullin, M. Yangubaeva // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 41 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Difference-difference systems are suggested corresponding to the Cartan matrices of any simple or affine Lie algebra. In the cases of the algebras AN, BN, CN, G₂, D₃, A₁⁽¹⁾, A₂⁽²⁾, DN⁽²⁾ these systems are proved to be integrable. For the systems corresponding to the algebras A₂, A₁⁽¹⁾, A₂⁽²⁾ generalized symmetries are found. For the systems A₂, B₂, C₂, G₂, D₃ complete sets of independent integrals are found. The Lax representation for the difference-difference systems corresponding to AN, BN, CN, A₁⁽¹⁾,DN⁽²⁾ are presented. |
---|