Superintegrable Extensions of Superintegrable Systems
A procedure to extend a superintegrable system into a new superintegrable one is systematically tested for the known systems on E² and S² and for a family of systems defined on constant curvature manifolds. The procedure results effective in many cases including Tremblay-Turbiner-Winternitz and thre...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2012
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148469 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Superintegrable Extensions of Superintegrable Systems / C.M. Chanu, L. Degiovanni, G. Rastelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 10 назв. — англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | A procedure to extend a superintegrable system into a new superintegrable one is systematically tested for the known systems on E² and S² and for a family of systems defined on constant curvature manifolds. The procedure results effective in many cases including Tremblay-Turbiner-Winternitz and three-particle Calogero systems. |
---|