Superintegrable Extensions of Superintegrable Systems

A procedure to extend a superintegrable system into a new superintegrable one is systematically tested for the known systems on E² and S² and for a family of systems defined on constant curvature manifolds. The procedure results effective in many cases including Tremblay-Turbiner-Winternitz and thre...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Chanu, C.M., Degiovanni, L., Rastelli, G.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148469
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Superintegrable Extensions of Superintegrable Systems / C.M. Chanu, L. Degiovanni, G. Rastelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 10 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148469
record_format dspace
spelling irk-123456789-1484692019-02-19T01:26:29Z Superintegrable Extensions of Superintegrable Systems Chanu, C.M. Degiovanni, L. Rastelli, G. A procedure to extend a superintegrable system into a new superintegrable one is systematically tested for the known systems on E² and S² and for a family of systems defined on constant curvature manifolds. The procedure results effective in many cases including Tremblay-Turbiner-Winternitz and three-particle Calogero systems. 2012 Article Superintegrable Extensions of Superintegrable Systems / C.M. Chanu, L. Degiovanni, G. Rastelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 10 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 70H06; 70H33; 53C21 DOI: http://dx.doi.org/10.3842/SIGMA.2012.070 http://dspace.nbuv.gov.ua/handle/123456789/148469 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A procedure to extend a superintegrable system into a new superintegrable one is systematically tested for the known systems on E² and S² and for a family of systems defined on constant curvature manifolds. The procedure results effective in many cases including Tremblay-Turbiner-Winternitz and three-particle Calogero systems.
format Article
author Chanu, C.M.
Degiovanni, L.
Rastelli, G.
spellingShingle Chanu, C.M.
Degiovanni, L.
Rastelli, G.
Superintegrable Extensions of Superintegrable Systems
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Chanu, C.M.
Degiovanni, L.
Rastelli, G.
author_sort Chanu, C.M.
title Superintegrable Extensions of Superintegrable Systems
title_short Superintegrable Extensions of Superintegrable Systems
title_full Superintegrable Extensions of Superintegrable Systems
title_fullStr Superintegrable Extensions of Superintegrable Systems
title_full_unstemmed Superintegrable Extensions of Superintegrable Systems
title_sort superintegrable extensions of superintegrable systems
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148469
citation_txt Superintegrable Extensions of Superintegrable Systems / C.M. Chanu, L. Degiovanni, G. Rastelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 10 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT chanucm superintegrableextensionsofsuperintegrablesystems
AT degiovannil superintegrableextensionsofsuperintegrablesystems
AT rastellig superintegrableextensionsofsuperintegrablesystems
first_indexed 2023-05-20T17:30:45Z
last_indexed 2023-05-20T17:30:45Z
_version_ 1796153466197901312