Superintegrable Extensions of Superintegrable Systems
A procedure to extend a superintegrable system into a new superintegrable one is systematically tested for the known systems on E² and S² and for a family of systems defined on constant curvature manifolds. The procedure results effective in many cases including Tremblay-Turbiner-Winternitz and thre...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2012
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148469 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Superintegrable Extensions of Superintegrable Systems / C.M. Chanu, L. Degiovanni, G. Rastelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 10 назв. — англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148469 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1484692019-02-19T01:26:29Z Superintegrable Extensions of Superintegrable Systems Chanu, C.M. Degiovanni, L. Rastelli, G. A procedure to extend a superintegrable system into a new superintegrable one is systematically tested for the known systems on E² and S² and for a family of systems defined on constant curvature manifolds. The procedure results effective in many cases including Tremblay-Turbiner-Winternitz and three-particle Calogero systems. 2012 Article Superintegrable Extensions of Superintegrable Systems / C.M. Chanu, L. Degiovanni, G. Rastelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 10 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 70H06; 70H33; 53C21 DOI: http://dx.doi.org/10.3842/SIGMA.2012.070 http://dspace.nbuv.gov.ua/handle/123456789/148469 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A procedure to extend a superintegrable system into a new superintegrable one is systematically tested for the known systems on E² and S² and for a family of systems defined on constant curvature manifolds. The procedure results effective in many cases including Tremblay-Turbiner-Winternitz and three-particle Calogero systems. |
format |
Article |
author |
Chanu, C.M. Degiovanni, L. Rastelli, G. |
spellingShingle |
Chanu, C.M. Degiovanni, L. Rastelli, G. Superintegrable Extensions of Superintegrable Systems Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Chanu, C.M. Degiovanni, L. Rastelli, G. |
author_sort |
Chanu, C.M. |
title |
Superintegrable Extensions of Superintegrable Systems |
title_short |
Superintegrable Extensions of Superintegrable Systems |
title_full |
Superintegrable Extensions of Superintegrable Systems |
title_fullStr |
Superintegrable Extensions of Superintegrable Systems |
title_full_unstemmed |
Superintegrable Extensions of Superintegrable Systems |
title_sort |
superintegrable extensions of superintegrable systems |
publisher |
Інститут математики НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148469 |
citation_txt |
Superintegrable Extensions of Superintegrable Systems / C.M. Chanu, L. Degiovanni, G. Rastelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 10 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT chanucm superintegrableextensionsofsuperintegrablesystems AT degiovannil superintegrableextensionsofsuperintegrablesystems AT rastellig superintegrableextensionsofsuperintegrablesystems |
first_indexed |
2023-05-20T17:30:45Z |
last_indexed |
2023-05-20T17:30:45Z |
_version_ |
1796153466197901312 |