Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature

We review the theory of orthogonal separation of variables of the Hamilton-Jacobi equation on spaces of constant curvature, highlighting key contributions to the theory by Benenti. This theory revolves around a special type of conformal Killing tensor, hereafter called a concircular tensor. First, w...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Rajaratnam, K., McLenaghan, R.G., Valero, C.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148531
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature / K. Rajaratnam, R.G. McLenaghan, C. Valero // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 41 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148531
record_format dspace
spelling irk-123456789-1485312019-02-19T01:24:09Z Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature Rajaratnam, K. McLenaghan, R.G. Valero, C. We review the theory of orthogonal separation of variables of the Hamilton-Jacobi equation on spaces of constant curvature, highlighting key contributions to the theory by Benenti. This theory revolves around a special type of conformal Killing tensor, hereafter called a concircular tensor. First, we show how to extend original results given by Benenti to intrinsically characterize all (orthogonal) separable coordinates in spaces of constant curvature using concircular tensors. This results in the construction of a special class of separable coordinates known as Kalnins-Eisenhart-Miller coordinates. Then we present the Benenti-Eisenhart-Kalnins-Miller separation algorithm, which uses concircular tensors to intrinsically search for Kalnins-Eisenhart-Miller coordinates which separate a given natural Hamilton-Jacobi equation. As a new application of the theory, we show how to obtain the separable coordinate systems in the two dimensional spaces of constant curvature, Minkowski and (Anti-)de Sitter space. We also apply the Benenti-Eisenhart-Kalnins-Miller separation algorithm to study the separability of the three dimensional Calogero-Moser and Morosi-Tondo systems. 2016 Article Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature / K. Rajaratnam, R.G. McLenaghan, C. Valero // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 41 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53C15; 70H20; 53A60 DOI:10.3842/SIGMA.2016.117 http://dspace.nbuv.gov.ua/handle/123456789/148531 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We review the theory of orthogonal separation of variables of the Hamilton-Jacobi equation on spaces of constant curvature, highlighting key contributions to the theory by Benenti. This theory revolves around a special type of conformal Killing tensor, hereafter called a concircular tensor. First, we show how to extend original results given by Benenti to intrinsically characterize all (orthogonal) separable coordinates in spaces of constant curvature using concircular tensors. This results in the construction of a special class of separable coordinates known as Kalnins-Eisenhart-Miller coordinates. Then we present the Benenti-Eisenhart-Kalnins-Miller separation algorithm, which uses concircular tensors to intrinsically search for Kalnins-Eisenhart-Miller coordinates which separate a given natural Hamilton-Jacobi equation. As a new application of the theory, we show how to obtain the separable coordinate systems in the two dimensional spaces of constant curvature, Minkowski and (Anti-)de Sitter space. We also apply the Benenti-Eisenhart-Kalnins-Miller separation algorithm to study the separability of the three dimensional Calogero-Moser and Morosi-Tondo systems.
format Article
author Rajaratnam, K.
McLenaghan, R.G.
Valero, C.
spellingShingle Rajaratnam, K.
McLenaghan, R.G.
Valero, C.
Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Rajaratnam, K.
McLenaghan, R.G.
Valero, C.
author_sort Rajaratnam, K.
title Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature
title_short Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature
title_full Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature
title_fullStr Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature
title_full_unstemmed Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature
title_sort orthogonal separation of the hamilton-jacobi equation on spaces of constant curvature
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/148531
citation_txt Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature / K. Rajaratnam, R.G. McLenaghan, C. Valero // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 41 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT rajaratnamk orthogonalseparationofthehamiltonjacobiequationonspacesofconstantcurvature
AT mclenaghanrg orthogonalseparationofthehamiltonjacobiequationonspacesofconstantcurvature
AT valeroc orthogonalseparationofthehamiltonjacobiequationonspacesofconstantcurvature
first_indexed 2023-05-20T17:29:42Z
last_indexed 2023-05-20T17:29:42Z
_version_ 1796153419391565824