Hypergroups Related to a Pair of Compact Hypergroups
The purpose of the present paper is to investigate a hypergroup associated with irreducible characters of a compact hypergroup H and a closed subhypergroup H₀ of H with |H/H₀|<+∞. The convolution of this hypergroup is introduced by inducing irreducible characters of H₀ to H and by restricting irr...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2016
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148533 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Hypergroups Related to a Pair of Compact Hypergroups / H. Heyer, S. Kawakami, T. Tsurii, S. Yamanaka // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The purpose of the present paper is to investigate a hypergroup associated with irreducible characters of a compact hypergroup H and a closed subhypergroup H₀ of H with |H/H₀|<+∞. The convolution of this hypergroup is introduced by inducing irreducible characters of H₀ to H and by restricting irreducible characters of H to H₀. The method of proof relies on the notion of an induced character and an admissible hypergroup pair. |
---|