Geometry of G-Structures via the Intrinsic Torsion

We study the geometry of a G-structure P inside the oriented orthonormal frame bundle SO(M) over an oriented Riemannian manifold M. We assume that G is connected and closed, so the quotient SO(n)/G, where n=dimM, is a normal homogeneous space and we equip SO(M) with the natural Riemannian structure...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Niedziałomski, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148543
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Geometry of G-Structures via the Intrinsic Torsion / K. Niedziałomski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148543
record_format dspace
spelling irk-123456789-1485432019-02-19T01:24:15Z Geometry of G-Structures via the Intrinsic Torsion Niedziałomski, K. We study the geometry of a G-structure P inside the oriented orthonormal frame bundle SO(M) over an oriented Riemannian manifold M. We assume that G is connected and closed, so the quotient SO(n)/G, where n=dimM, is a normal homogeneous space and we equip SO(M) with the natural Riemannian structure induced from the structure on M and the Killing form of SO(n). We show, in particular, that minimality of P is equivalent to harmonicity of an induced section of the homogeneous bundle SO(M)×SO(n)SO(n)/G, with a Riemannian metric on M obtained as the pull-back with respect to this section of the Riemannian metric on the considered associated bundle, and to the minimality of the image of this section. We apply obtained results to the case of almost product structures, i.e., structures induced by plane fields. 2016 Article Geometry of G-Structures via the Intrinsic Torsion / K. Niedziałomski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 21 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53C10; 53C24; 53C43; 53C15 DOI:10.3842/SIGMA.2016.107 http://dspace.nbuv.gov.ua/handle/123456789/148543 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We study the geometry of a G-structure P inside the oriented orthonormal frame bundle SO(M) over an oriented Riemannian manifold M. We assume that G is connected and closed, so the quotient SO(n)/G, where n=dimM, is a normal homogeneous space and we equip SO(M) with the natural Riemannian structure induced from the structure on M and the Killing form of SO(n). We show, in particular, that minimality of P is equivalent to harmonicity of an induced section of the homogeneous bundle SO(M)×SO(n)SO(n)/G, with a Riemannian metric on M obtained as the pull-back with respect to this section of the Riemannian metric on the considered associated bundle, and to the minimality of the image of this section. We apply obtained results to the case of almost product structures, i.e., structures induced by plane fields.
format Article
author Niedziałomski, K.
spellingShingle Niedziałomski, K.
Geometry of G-Structures via the Intrinsic Torsion
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Niedziałomski, K.
author_sort Niedziałomski, K.
title Geometry of G-Structures via the Intrinsic Torsion
title_short Geometry of G-Structures via the Intrinsic Torsion
title_full Geometry of G-Structures via the Intrinsic Torsion
title_fullStr Geometry of G-Structures via the Intrinsic Torsion
title_full_unstemmed Geometry of G-Structures via the Intrinsic Torsion
title_sort geometry of g-structures via the intrinsic torsion
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/148543
citation_txt Geometry of G-Structures via the Intrinsic Torsion / K. Niedziałomski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 21 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT niedziałomskik geometryofgstructuresviatheintrinsictorsion
first_indexed 2023-05-20T17:29:43Z
last_indexed 2023-05-20T17:29:43Z
_version_ 1796153420028051456