From Conformal Group to Symmetries of Hypergeometric Type Equations
We show that properties of hypergeometric type equations become transparent if they are derived from appropriate 2nd order partial differential equations with constant coefficients. In particular, we deduce the symmetries of the hypergeometric and Gegenbauer equation from conformal symmetries of the...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2016
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148546 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | From Conformal Group to Symmetries of Hypergeometric Type Equations / J. Dereziński, P. Majewski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 48 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148546 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1485462019-02-19T01:24:19Z From Conformal Group to Symmetries of Hypergeometric Type Equations Dereziński, J. Majewski, P. We show that properties of hypergeometric type equations become transparent if they are derived from appropriate 2nd order partial differential equations with constant coefficients. In particular, we deduce the symmetries of the hypergeometric and Gegenbauer equation from conformal symmetries of the 4- and 3-dimensional Laplace equation. We also derive the symmetries of the confluent and Hermite equation from the so-called Schrödinger symmetries of the heat equation in 2 and 1 dimension. Finally, we also describe how properties of the ₀F₁ equation follow from the Helmholtz equation in 2 dimensions. 2016 Article From Conformal Group to Symmetries of Hypergeometric Type Equations / J. Dereziński, P. Majewski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 48 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35J05; 33Cxx; 35B06 DOI:10.3842/SIGMA.2016.108 http://dspace.nbuv.gov.ua/handle/123456789/148546 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We show that properties of hypergeometric type equations become transparent if they are derived from appropriate 2nd order partial differential equations with constant coefficients. In particular, we deduce the symmetries of the hypergeometric and Gegenbauer equation from conformal symmetries of the 4- and 3-dimensional Laplace equation. We also derive the symmetries of the confluent and Hermite equation from the so-called Schrödinger symmetries of the heat equation in 2 and 1 dimension. Finally, we also describe how properties of the ₀F₁ equation follow from the Helmholtz equation in 2 dimensions. |
format |
Article |
author |
Dereziński, J. Majewski, P. |
spellingShingle |
Dereziński, J. Majewski, P. From Conformal Group to Symmetries of Hypergeometric Type Equations Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Dereziński, J. Majewski, P. |
author_sort |
Dereziński, J. |
title |
From Conformal Group to Symmetries of Hypergeometric Type Equations |
title_short |
From Conformal Group to Symmetries of Hypergeometric Type Equations |
title_full |
From Conformal Group to Symmetries of Hypergeometric Type Equations |
title_fullStr |
From Conformal Group to Symmetries of Hypergeometric Type Equations |
title_full_unstemmed |
From Conformal Group to Symmetries of Hypergeometric Type Equations |
title_sort |
from conformal group to symmetries of hypergeometric type equations |
publisher |
Інститут математики НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148546 |
citation_txt |
From Conformal Group to Symmetries of Hypergeometric Type Equations / J. Dereziński, P. Majewski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 48 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT derezinskij fromconformalgrouptosymmetriesofhypergeometrictypeequations AT majewskip fromconformalgrouptosymmetriesofhypergeometrictypeequations |
first_indexed |
2023-05-20T17:29:43Z |
last_indexed |
2023-05-20T17:29:43Z |
_version_ |
1796153420132909056 |