From Conformal Group to Symmetries of Hypergeometric Type Equations

We show that properties of hypergeometric type equations become transparent if they are derived from appropriate 2nd order partial differential equations with constant coefficients. In particular, we deduce the symmetries of the hypergeometric and Gegenbauer equation from conformal symmetries of the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Dereziński, J., Majewski, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148546
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:From Conformal Group to Symmetries of Hypergeometric Type Equations / J. Dereziński, P. Majewski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 48 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148546
record_format dspace
spelling irk-123456789-1485462019-02-19T01:24:19Z From Conformal Group to Symmetries of Hypergeometric Type Equations Dereziński, J. Majewski, P. We show that properties of hypergeometric type equations become transparent if they are derived from appropriate 2nd order partial differential equations with constant coefficients. In particular, we deduce the symmetries of the hypergeometric and Gegenbauer equation from conformal symmetries of the 4- and 3-dimensional Laplace equation. We also derive the symmetries of the confluent and Hermite equation from the so-called Schrödinger symmetries of the heat equation in 2 and 1 dimension. Finally, we also describe how properties of the ₀F₁ equation follow from the Helmholtz equation in 2 dimensions. 2016 Article From Conformal Group to Symmetries of Hypergeometric Type Equations / J. Dereziński, P. Majewski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 48 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35J05; 33Cxx; 35B06 DOI:10.3842/SIGMA.2016.108 http://dspace.nbuv.gov.ua/handle/123456789/148546 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We show that properties of hypergeometric type equations become transparent if they are derived from appropriate 2nd order partial differential equations with constant coefficients. In particular, we deduce the symmetries of the hypergeometric and Gegenbauer equation from conformal symmetries of the 4- and 3-dimensional Laplace equation. We also derive the symmetries of the confluent and Hermite equation from the so-called Schrödinger symmetries of the heat equation in 2 and 1 dimension. Finally, we also describe how properties of the ₀F₁ equation follow from the Helmholtz equation in 2 dimensions.
format Article
author Dereziński, J.
Majewski, P.
spellingShingle Dereziński, J.
Majewski, P.
From Conformal Group to Symmetries of Hypergeometric Type Equations
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Dereziński, J.
Majewski, P.
author_sort Dereziński, J.
title From Conformal Group to Symmetries of Hypergeometric Type Equations
title_short From Conformal Group to Symmetries of Hypergeometric Type Equations
title_full From Conformal Group to Symmetries of Hypergeometric Type Equations
title_fullStr From Conformal Group to Symmetries of Hypergeometric Type Equations
title_full_unstemmed From Conformal Group to Symmetries of Hypergeometric Type Equations
title_sort from conformal group to symmetries of hypergeometric type equations
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/148546
citation_txt From Conformal Group to Symmetries of Hypergeometric Type Equations / J. Dereziński, P. Majewski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 48 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT derezinskij fromconformalgrouptosymmetriesofhypergeometrictypeequations
AT majewskip fromconformalgrouptosymmetriesofhypergeometrictypeequations
first_indexed 2023-05-20T17:29:43Z
last_indexed 2023-05-20T17:29:43Z
_version_ 1796153420132909056