On Free Field Realizations of W(2,2)-Modules

The aim of the paper is to study modules for the twisted Heisenberg-Virasoro algebra H at level zero as modules for the W(2,2)-algebra by using construction from [J. Pure Appl. Algebra 219 (2015), 4322-4342, arXiv:1405.1707]. We prove that the irreducible highest weight H-module is irreducible as W(...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Adamović, D., Radobolja, G.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148548
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Free Field Realizations of W(2,2)-Modules / D. Adamović, G. Radobolja // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The aim of the paper is to study modules for the twisted Heisenberg-Virasoro algebra H at level zero as modules for the W(2,2)-algebra by using construction from [J. Pure Appl. Algebra 219 (2015), 4322-4342, arXiv:1405.1707]. We prove that the irreducible highest weight H-module is irreducible as W(2,2)-module if and only if it has a typical highest weight. Finally, we construct a screening operator acting on the Heisenberg-Virasoro vertex algebra whose kernel is exactly W(2,2) vertex algebra.