On Free Field Realizations of W(2,2)-Modules
The aim of the paper is to study modules for the twisted Heisenberg-Virasoro algebra H at level zero as modules for the W(2,2)-algebra by using construction from [J. Pure Appl. Algebra 219 (2015), 4322-4342, arXiv:1405.1707]. We prove that the irreducible highest weight H-module is irreducible as W(...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2016
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148548 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On Free Field Realizations of W(2,2)-Modules / D. Adamović, G. Radobolja // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 20 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148548 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1485482019-02-19T01:24:16Z On Free Field Realizations of W(2,2)-Modules Adamović, D. Radobolja, G. The aim of the paper is to study modules for the twisted Heisenberg-Virasoro algebra H at level zero as modules for the W(2,2)-algebra by using construction from [J. Pure Appl. Algebra 219 (2015), 4322-4342, arXiv:1405.1707]. We prove that the irreducible highest weight H-module is irreducible as W(2,2)-module if and only if it has a typical highest weight. Finally, we construct a screening operator acting on the Heisenberg-Virasoro vertex algebra whose kernel is exactly W(2,2) vertex algebra. 2016 Article On Free Field Realizations of W(2,2)-Modules / D. Adamović, G. Radobolja // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 20 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B69; 17B67; 17B68; 81R10 DOI:10.3842/SIGMA.2016.113 http://dspace.nbuv.gov.ua/handle/123456789/148548 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The aim of the paper is to study modules for the twisted Heisenberg-Virasoro algebra H at level zero as modules for the W(2,2)-algebra by using construction from [J. Pure Appl. Algebra 219 (2015), 4322-4342, arXiv:1405.1707]. We prove that the irreducible highest weight H-module is irreducible as W(2,2)-module if and only if it has a typical highest weight. Finally, we construct a screening operator acting on the Heisenberg-Virasoro vertex algebra whose kernel is exactly W(2,2) vertex algebra. |
format |
Article |
author |
Adamović, D. Radobolja, G. |
spellingShingle |
Adamović, D. Radobolja, G. On Free Field Realizations of W(2,2)-Modules Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Adamović, D. Radobolja, G. |
author_sort |
Adamović, D. |
title |
On Free Field Realizations of W(2,2)-Modules |
title_short |
On Free Field Realizations of W(2,2)-Modules |
title_full |
On Free Field Realizations of W(2,2)-Modules |
title_fullStr |
On Free Field Realizations of W(2,2)-Modules |
title_full_unstemmed |
On Free Field Realizations of W(2,2)-Modules |
title_sort |
on free field realizations of w(2,2)-modules |
publisher |
Інститут математики НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148548 |
citation_txt |
On Free Field Realizations of W(2,2)-Modules / D. Adamović, G. Radobolja // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 20 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT adamovicd onfreefieldrealizationsofw22modules AT radoboljag onfreefieldrealizationsofw22modules |
first_indexed |
2023-05-20T17:29:43Z |
last_indexed |
2023-05-20T17:29:43Z |
_version_ |
1796153420344721408 |