2025-02-23T16:48:45-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-148548%22&qt=morelikethis&rows=5
2025-02-23T16:48:45-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-148548%22&qt=morelikethis&rows=5
2025-02-23T16:48:45-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T16:48:45-05:00 DEBUG: Deserialized SOLR response

On Free Field Realizations of W(2,2)-Modules

The aim of the paper is to study modules for the twisted Heisenberg-Virasoro algebra H at level zero as modules for the W(2,2)-algebra by using construction from [J. Pure Appl. Algebra 219 (2015), 4322-4342, arXiv:1405.1707]. We prove that the irreducible highest weight H-module is irreducible as W(...

Full description

Saved in:
Bibliographic Details
Main Authors: Adamović, D., Radobolja, G.
Format: Article
Language:English
Published: Інститут математики НАН України 2016
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/148548
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-148548
record_format dspace
spelling irk-123456789-1485482019-02-19T01:24:16Z On Free Field Realizations of W(2,2)-Modules Adamović, D. Radobolja, G. The aim of the paper is to study modules for the twisted Heisenberg-Virasoro algebra H at level zero as modules for the W(2,2)-algebra by using construction from [J. Pure Appl. Algebra 219 (2015), 4322-4342, arXiv:1405.1707]. We prove that the irreducible highest weight H-module is irreducible as W(2,2)-module if and only if it has a typical highest weight. Finally, we construct a screening operator acting on the Heisenberg-Virasoro vertex algebra whose kernel is exactly W(2,2) vertex algebra. 2016 Article On Free Field Realizations of W(2,2)-Modules / D. Adamović, G. Radobolja // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 20 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B69; 17B67; 17B68; 81R10 DOI:10.3842/SIGMA.2016.113 http://dspace.nbuv.gov.ua/handle/123456789/148548 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The aim of the paper is to study modules for the twisted Heisenberg-Virasoro algebra H at level zero as modules for the W(2,2)-algebra by using construction from [J. Pure Appl. Algebra 219 (2015), 4322-4342, arXiv:1405.1707]. We prove that the irreducible highest weight H-module is irreducible as W(2,2)-module if and only if it has a typical highest weight. Finally, we construct a screening operator acting on the Heisenberg-Virasoro vertex algebra whose kernel is exactly W(2,2) vertex algebra.
format Article
author Adamović, D.
Radobolja, G.
spellingShingle Adamović, D.
Radobolja, G.
On Free Field Realizations of W(2,2)-Modules
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Adamović, D.
Radobolja, G.
author_sort Adamović, D.
title On Free Field Realizations of W(2,2)-Modules
title_short On Free Field Realizations of W(2,2)-Modules
title_full On Free Field Realizations of W(2,2)-Modules
title_fullStr On Free Field Realizations of W(2,2)-Modules
title_full_unstemmed On Free Field Realizations of W(2,2)-Modules
title_sort on free field realizations of w(2,2)-modules
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/148548
citation_txt On Free Field Realizations of W(2,2)-Modules / D. Adamović, G. Radobolja // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 20 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT adamovicd onfreefieldrealizationsofw22modules
AT radoboljag onfreefieldrealizationsofw22modules
first_indexed 2023-05-20T17:29:43Z
last_indexed 2023-05-20T17:29:43Z
_version_ 1796153420344721408