Cartan Connections on Lie Groupoids and their Integrability
A multiplicatively closed, horizontal n-plane field D on a Lie groupoid G over M generalizes to intransitive geometry the classical notion of a Cartan connection. The infinitesimalization of the connection D is a Cartan connection ∇ on the Lie algebroid of G, a notion already studied elsewhere by th...
Збережено в:
Дата: | 2016 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2016
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148549 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Cartan Connections on Lie Groupoids and their Integrability / A.D. Blaom // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148549 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1485492019-02-19T01:24:21Z Cartan Connections on Lie Groupoids and their Integrability Blaom, A.D. A multiplicatively closed, horizontal n-plane field D on a Lie groupoid G over M generalizes to intransitive geometry the classical notion of a Cartan connection. The infinitesimalization of the connection D is a Cartan connection ∇ on the Lie algebroid of G, a notion already studied elsewhere by the author. It is shown that ∇ may be regarded as infinitesimal parallel translation in the groupoid G along D. From this follows a proof that D defines a pseudoaction generating a pseudogroup of transformations on M precisely when the curvature of ∇ vanishes. A byproduct of this analysis is a detailed description of multiplication in the groupoid J¹G of one-jets of bisections of G. 2016 Article Cartan Connections on Lie Groupoids and their Integrability / A.D. Blaom // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53C05; 58H05; 53C07 DOI:10.3842/SIGMA.2016.114 http://dspace.nbuv.gov.ua/handle/123456789/148549 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A multiplicatively closed, horizontal n-plane field D on a Lie groupoid G over M generalizes to intransitive geometry the classical notion of a Cartan connection. The infinitesimalization of the connection D is a Cartan connection ∇ on the Lie algebroid of G, a notion already studied elsewhere by the author. It is shown that ∇ may be regarded as infinitesimal parallel translation in the groupoid G along D. From this follows a proof that D defines a pseudoaction generating a pseudogroup of transformations on M precisely when the curvature of ∇ vanishes. A byproduct of this analysis is a detailed description of multiplication in the groupoid J¹G of one-jets of bisections of G. |
format |
Article |
author |
Blaom, A.D. |
spellingShingle |
Blaom, A.D. Cartan Connections on Lie Groupoids and their Integrability Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Blaom, A.D. |
author_sort |
Blaom, A.D. |
title |
Cartan Connections on Lie Groupoids and their Integrability |
title_short |
Cartan Connections on Lie Groupoids and their Integrability |
title_full |
Cartan Connections on Lie Groupoids and their Integrability |
title_fullStr |
Cartan Connections on Lie Groupoids and their Integrability |
title_full_unstemmed |
Cartan Connections on Lie Groupoids and their Integrability |
title_sort |
cartan connections on lie groupoids and their integrability |
publisher |
Інститут математики НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148549 |
citation_txt |
Cartan Connections on Lie Groupoids and their Integrability / A.D. Blaom // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT blaomad cartanconnectionsonliegroupoidsandtheirintegrability |
first_indexed |
2023-05-20T17:29:43Z |
last_indexed |
2023-05-20T17:29:43Z |
_version_ |
1796153420449579008 |