Cartan Connections on Lie Groupoids and their Integrability

A multiplicatively closed, horizontal n-plane field D on a Lie groupoid G over M generalizes to intransitive geometry the classical notion of a Cartan connection. The infinitesimalization of the connection D is a Cartan connection ∇ on the Lie algebroid of G, a notion already studied elsewhere by th...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Blaom, A.D.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148549
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Cartan Connections on Lie Groupoids and their Integrability / A.D. Blaom // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148549
record_format dspace
spelling irk-123456789-1485492019-02-19T01:24:21Z Cartan Connections on Lie Groupoids and their Integrability Blaom, A.D. A multiplicatively closed, horizontal n-plane field D on a Lie groupoid G over M generalizes to intransitive geometry the classical notion of a Cartan connection. The infinitesimalization of the connection D is a Cartan connection ∇ on the Lie algebroid of G, a notion already studied elsewhere by the author. It is shown that ∇ may be regarded as infinitesimal parallel translation in the groupoid G along D. From this follows a proof that D defines a pseudoaction generating a pseudogroup of transformations on M precisely when the curvature of ∇ vanishes. A byproduct of this analysis is a detailed description of multiplication in the groupoid J¹G of one-jets of bisections of G. 2016 Article Cartan Connections on Lie Groupoids and their Integrability / A.D. Blaom // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53C05; 58H05; 53C07 DOI:10.3842/SIGMA.2016.114 http://dspace.nbuv.gov.ua/handle/123456789/148549 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A multiplicatively closed, horizontal n-plane field D on a Lie groupoid G over M generalizes to intransitive geometry the classical notion of a Cartan connection. The infinitesimalization of the connection D is a Cartan connection ∇ on the Lie algebroid of G, a notion already studied elsewhere by the author. It is shown that ∇ may be regarded as infinitesimal parallel translation in the groupoid G along D. From this follows a proof that D defines a pseudoaction generating a pseudogroup of transformations on M precisely when the curvature of ∇ vanishes. A byproduct of this analysis is a detailed description of multiplication in the groupoid J¹G of one-jets of bisections of G.
format Article
author Blaom, A.D.
spellingShingle Blaom, A.D.
Cartan Connections on Lie Groupoids and their Integrability
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Blaom, A.D.
author_sort Blaom, A.D.
title Cartan Connections on Lie Groupoids and their Integrability
title_short Cartan Connections on Lie Groupoids and their Integrability
title_full Cartan Connections on Lie Groupoids and their Integrability
title_fullStr Cartan Connections on Lie Groupoids and their Integrability
title_full_unstemmed Cartan Connections on Lie Groupoids and their Integrability
title_sort cartan connections on lie groupoids and their integrability
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/148549
citation_txt Cartan Connections on Lie Groupoids and their Integrability / A.D. Blaom // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT blaomad cartanconnectionsonliegroupoidsandtheirintegrability
first_indexed 2023-05-20T17:29:43Z
last_indexed 2023-05-20T17:29:43Z
_version_ 1796153420449579008