Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds
An algebraic GKM manifold is a non-singular algebraic variety equipped with an algebraic action of an algebraic torus, with only finitely many torus fixed points and finitely many 1-dimensional orbits. In this expository article, we use virtual localization to express equivariant Gromov-Witten invar...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148556 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds / Chiu-Chu Melissa Liu, A. Sheshmani // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 29 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148556 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1485562019-02-19T01:24:48Z Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds Liu, Chiu-Chu Melissa Sheshmani, A. An algebraic GKM manifold is a non-singular algebraic variety equipped with an algebraic action of an algebraic torus, with only finitely many torus fixed points and finitely many 1-dimensional orbits. In this expository article, we use virtual localization to express equivariant Gromov-Witten invariants of any algebraic GKM manifold (which is not necessarily compact) in terms of Hodge integrals over moduli stacks of stable curves and the GKM graph of the GKM manifold. 2017 Article Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds / Chiu-Chu Melissa Liu, A. Sheshmani // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 29 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14C05; 14D20; 14F05; 14J30; 14N10 DOI:10.3842/SIGMA.2017.048 http://dspace.nbuv.gov.ua/handle/123456789/148556 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
An algebraic GKM manifold is a non-singular algebraic variety equipped with an algebraic action of an algebraic torus, with only finitely many torus fixed points and finitely many 1-dimensional orbits. In this expository article, we use virtual localization to express equivariant Gromov-Witten invariants of any algebraic GKM manifold (which is not necessarily compact) in terms of Hodge integrals over moduli stacks of stable curves and the GKM graph of the GKM manifold. |
format |
Article |
author |
Liu, Chiu-Chu Melissa Sheshmani, A. |
spellingShingle |
Liu, Chiu-Chu Melissa Sheshmani, A. Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Liu, Chiu-Chu Melissa Sheshmani, A. |
author_sort |
Liu, Chiu-Chu Melissa |
title |
Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds |
title_short |
Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds |
title_full |
Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds |
title_fullStr |
Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds |
title_full_unstemmed |
Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds |
title_sort |
equivariant gromov-witten invariants of algebraic gkm manifolds |
publisher |
Інститут математики НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148556 |
citation_txt |
Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds / Chiu-Chu Melissa Liu, A. Sheshmani // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 29 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT liuchiuchumelissa equivariantgromovwitteninvariantsofalgebraicgkmmanifolds AT sheshmania equivariantgromovwitteninvariantsofalgebraicgkmmanifolds |
first_indexed |
2023-05-20T17:30:51Z |
last_indexed |
2023-05-20T17:30:51Z |
_version_ |
1796153469504061440 |