Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds

An algebraic GKM manifold is a non-singular algebraic variety equipped with an algebraic action of an algebraic torus, with only finitely many torus fixed points and finitely many 1-dimensional orbits. In this expository article, we use virtual localization to express equivariant Gromov-Witten invar...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Liu, Chiu-Chu Melissa, Sheshmani, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148556
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds / Chiu-Chu Melissa Liu, A. Sheshmani // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 29 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148556
record_format dspace
spelling irk-123456789-1485562019-02-19T01:24:48Z Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds Liu, Chiu-Chu Melissa Sheshmani, A. An algebraic GKM manifold is a non-singular algebraic variety equipped with an algebraic action of an algebraic torus, with only finitely many torus fixed points and finitely many 1-dimensional orbits. In this expository article, we use virtual localization to express equivariant Gromov-Witten invariants of any algebraic GKM manifold (which is not necessarily compact) in terms of Hodge integrals over moduli stacks of stable curves and the GKM graph of the GKM manifold. 2017 Article Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds / Chiu-Chu Melissa Liu, A. Sheshmani // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 29 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14C05; 14D20; 14F05; 14J30; 14N10 DOI:10.3842/SIGMA.2017.048 http://dspace.nbuv.gov.ua/handle/123456789/148556 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description An algebraic GKM manifold is a non-singular algebraic variety equipped with an algebraic action of an algebraic torus, with only finitely many torus fixed points and finitely many 1-dimensional orbits. In this expository article, we use virtual localization to express equivariant Gromov-Witten invariants of any algebraic GKM manifold (which is not necessarily compact) in terms of Hodge integrals over moduli stacks of stable curves and the GKM graph of the GKM manifold.
format Article
author Liu, Chiu-Chu Melissa
Sheshmani, A.
spellingShingle Liu, Chiu-Chu Melissa
Sheshmani, A.
Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Liu, Chiu-Chu Melissa
Sheshmani, A.
author_sort Liu, Chiu-Chu Melissa
title Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds
title_short Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds
title_full Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds
title_fullStr Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds
title_full_unstemmed Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds
title_sort equivariant gromov-witten invariants of algebraic gkm manifolds
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/148556
citation_txt Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds / Chiu-Chu Melissa Liu, A. Sheshmani // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 29 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT liuchiuchumelissa equivariantgromovwitteninvariantsofalgebraicgkmmanifolds
AT sheshmania equivariantgromovwitteninvariantsofalgebraicgkmmanifolds
first_indexed 2023-05-20T17:30:51Z
last_indexed 2023-05-20T17:30:51Z
_version_ 1796153469504061440