Connected Lie Groupoids are Internally Connected and Integral Complete in Synthetic Differential Geometry
We extend some fundamental definitions and constructions in the established generalisation of Lie theory involving Lie groupoids by reformulating them in terms of groupoids internal to a well-adapted model of synthetic differential geometry. In particular we define internal counterparts of the defin...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148557 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Connected Lie Groupoids are Internally Connected and Integral Complete in Synthetic Differential Geometry / M. Burke // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 27 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineБудьте першим, хто залишить коментар!