Hodge Numbers from Picard-Fuchs Equations

Given a variation of Hodge structure over P¹ with Hodge numbers (1,1,…,1), we show how to compute the degrees of the Deligne extension of its Hodge bundles, following Eskin-Kontsevich-Möller-Zorich, by using the local exponents of the corresponding Picard-Fuchs equation. This allows us to compute th...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Doran, C.F., Harder, A., Thompson, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148559
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Hodge Numbers from Picard-Fuchs Equations / C.F. Doran, A. Harder, A. Thompson // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 31 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Given a variation of Hodge structure over P¹ with Hodge numbers (1,1,…,1), we show how to compute the degrees of the Deligne extension of its Hodge bundles, following Eskin-Kontsevich-Möller-Zorich, by using the local exponents of the corresponding Picard-Fuchs equation. This allows us to compute the Hodge numbers of Zucker's Hodge structure on the corresponding parabolic cohomology groups. We also apply this to families of elliptic curves, K3 surfaces and Calabi-Yau threefolds.