Hodge Numbers from Picard-Fuchs Equations

Given a variation of Hodge structure over P¹ with Hodge numbers (1,1,…,1), we show how to compute the degrees of the Deligne extension of its Hodge bundles, following Eskin-Kontsevich-Möller-Zorich, by using the local exponents of the corresponding Picard-Fuchs equation. This allows us to compute th...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Doran, C.F., Harder, A., Thompson, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148559
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Hodge Numbers from Picard-Fuchs Equations / C.F. Doran, A. Harder, A. Thompson // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 31 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148559
record_format dspace
spelling irk-123456789-1485592019-02-19T01:27:45Z Hodge Numbers from Picard-Fuchs Equations Doran, C.F. Harder, A. Thompson, A. Given a variation of Hodge structure over P¹ with Hodge numbers (1,1,…,1), we show how to compute the degrees of the Deligne extension of its Hodge bundles, following Eskin-Kontsevich-Möller-Zorich, by using the local exponents of the corresponding Picard-Fuchs equation. This allows us to compute the Hodge numbers of Zucker's Hodge structure on the corresponding parabolic cohomology groups. We also apply this to families of elliptic curves, K3 surfaces and Calabi-Yau threefolds. 2017 Article Hodge Numbers from Picard-Fuchs Equations / C.F. Doran, A. Harder, A. Thompson // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 31 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14D07; 14D05; 14J32 DOI:10.3842/SIGMA.2017.045 http://dspace.nbuv.gov.ua/handle/123456789/148559 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Given a variation of Hodge structure over P¹ with Hodge numbers (1,1,…,1), we show how to compute the degrees of the Deligne extension of its Hodge bundles, following Eskin-Kontsevich-Möller-Zorich, by using the local exponents of the corresponding Picard-Fuchs equation. This allows us to compute the Hodge numbers of Zucker's Hodge structure on the corresponding parabolic cohomology groups. We also apply this to families of elliptic curves, K3 surfaces and Calabi-Yau threefolds.
format Article
author Doran, C.F.
Harder, A.
Thompson, A.
spellingShingle Doran, C.F.
Harder, A.
Thompson, A.
Hodge Numbers from Picard-Fuchs Equations
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Doran, C.F.
Harder, A.
Thompson, A.
author_sort Doran, C.F.
title Hodge Numbers from Picard-Fuchs Equations
title_short Hodge Numbers from Picard-Fuchs Equations
title_full Hodge Numbers from Picard-Fuchs Equations
title_fullStr Hodge Numbers from Picard-Fuchs Equations
title_full_unstemmed Hodge Numbers from Picard-Fuchs Equations
title_sort hodge numbers from picard-fuchs equations
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/148559
citation_txt Hodge Numbers from Picard-Fuchs Equations / C.F. Doran, A. Harder, A. Thompson // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 31 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT dorancf hodgenumbersfrompicardfuchsequations
AT hardera hodgenumbersfrompicardfuchsequations
AT thompsona hodgenumbersfrompicardfuchsequations
first_indexed 2023-05-20T17:30:51Z
last_indexed 2023-05-20T17:30:51Z
_version_ 1796153469608919040