Hodge Numbers from Picard-Fuchs Equations
Given a variation of Hodge structure over P¹ with Hodge numbers (1,1,…,1), we show how to compute the degrees of the Deligne extension of its Hodge bundles, following Eskin-Kontsevich-Möller-Zorich, by using the local exponents of the corresponding Picard-Fuchs equation. This allows us to compute th...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148559 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Hodge Numbers from Picard-Fuchs Equations / C.F. Doran, A. Harder, A. Thompson // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 31 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148559 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1485592019-02-19T01:27:45Z Hodge Numbers from Picard-Fuchs Equations Doran, C.F. Harder, A. Thompson, A. Given a variation of Hodge structure over P¹ with Hodge numbers (1,1,…,1), we show how to compute the degrees of the Deligne extension of its Hodge bundles, following Eskin-Kontsevich-Möller-Zorich, by using the local exponents of the corresponding Picard-Fuchs equation. This allows us to compute the Hodge numbers of Zucker's Hodge structure on the corresponding parabolic cohomology groups. We also apply this to families of elliptic curves, K3 surfaces and Calabi-Yau threefolds. 2017 Article Hodge Numbers from Picard-Fuchs Equations / C.F. Doran, A. Harder, A. Thompson // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 31 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14D07; 14D05; 14J32 DOI:10.3842/SIGMA.2017.045 http://dspace.nbuv.gov.ua/handle/123456789/148559 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Given a variation of Hodge structure over P¹ with Hodge numbers (1,1,…,1), we show how to compute the degrees of the Deligne extension of its Hodge bundles, following Eskin-Kontsevich-Möller-Zorich, by using the local exponents of the corresponding Picard-Fuchs equation. This allows us to compute the Hodge numbers of Zucker's Hodge structure on the corresponding parabolic cohomology groups. We also apply this to families of elliptic curves, K3 surfaces and Calabi-Yau threefolds. |
format |
Article |
author |
Doran, C.F. Harder, A. Thompson, A. |
spellingShingle |
Doran, C.F. Harder, A. Thompson, A. Hodge Numbers from Picard-Fuchs Equations Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Doran, C.F. Harder, A. Thompson, A. |
author_sort |
Doran, C.F. |
title |
Hodge Numbers from Picard-Fuchs Equations |
title_short |
Hodge Numbers from Picard-Fuchs Equations |
title_full |
Hodge Numbers from Picard-Fuchs Equations |
title_fullStr |
Hodge Numbers from Picard-Fuchs Equations |
title_full_unstemmed |
Hodge Numbers from Picard-Fuchs Equations |
title_sort |
hodge numbers from picard-fuchs equations |
publisher |
Інститут математики НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148559 |
citation_txt |
Hodge Numbers from Picard-Fuchs Equations / C.F. Doran, A. Harder, A. Thompson // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 31 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT dorancf hodgenumbersfrompicardfuchsequations AT hardera hodgenumbersfrompicardfuchsequations AT thompsona hodgenumbersfrompicardfuchsequations |
first_indexed |
2023-05-20T17:30:51Z |
last_indexed |
2023-05-20T17:30:51Z |
_version_ |
1796153469608919040 |