Twistor Geometry of Null Foliations in Complex Euclidean Space
We give a detailed account of the geometric correspondence between a smooth complex projective quadric hypersurface Qⁿ of dimension n≥3, and its twistor space PT, defined to be the space of all linear subspaces of maximal dimension of Qⁿ. Viewing complex Euclidean space CEⁿ as a dense open subset of...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148560 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Twistor Geometry of Null Foliations in Complex Euclidean Space / A. Taghavi-Chabert // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We give a detailed account of the geometric correspondence between a smooth complex projective quadric hypersurface Qⁿ of dimension n≥3, and its twistor space PT, defined to be the space of all linear subspaces of maximal dimension of Qⁿ. Viewing complex Euclidean space CEⁿ as a dense open subset of Qⁿ, we show how local foliations tangent to certain integrable holomorphic totally null distributions of maximal rank on CEⁿ can be constructed in terms of complex submanifolds of PT. The construction is illustrated by means of two examples, one involving conformal Killing spinors, the other, conformal Killing-Yano 2-forms. We focus on the odd-dimensional case, and we treat the even-dimensional case only tangentially for comparison. |
---|