Twistor Geometry of Null Foliations in Complex Euclidean Space

We give a detailed account of the geometric correspondence between a smooth complex projective quadric hypersurface Qⁿ of dimension n≥3, and its twistor space PT, defined to be the space of all linear subspaces of maximal dimension of Qⁿ. Viewing complex Euclidean space CEⁿ as a dense open subset of...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Taghavi-Chabert, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148560
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Twistor Geometry of Null Foliations in Complex Euclidean Space / A. Taghavi-Chabert // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148560
record_format dspace
spelling irk-123456789-1485602019-02-19T01:25:41Z Twistor Geometry of Null Foliations in Complex Euclidean Space Taghavi-Chabert, A. We give a detailed account of the geometric correspondence between a smooth complex projective quadric hypersurface Qⁿ of dimension n≥3, and its twistor space PT, defined to be the space of all linear subspaces of maximal dimension of Qⁿ. Viewing complex Euclidean space CEⁿ as a dense open subset of Qⁿ, we show how local foliations tangent to certain integrable holomorphic totally null distributions of maximal rank on CEⁿ can be constructed in terms of complex submanifolds of PT. The construction is illustrated by means of two examples, one involving conformal Killing spinors, the other, conformal Killing-Yano 2-forms. We focus on the odd-dimensional case, and we treat the even-dimensional case only tangentially for comparison. 2017 Article Twistor Geometry of Null Foliations in Complex Euclidean Space / A. Taghavi-Chabert // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 32L25; 53C28; 53C12 DOI:10.3842/SIGMA.2017.005 http://dspace.nbuv.gov.ua/handle/123456789/148560 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We give a detailed account of the geometric correspondence between a smooth complex projective quadric hypersurface Qⁿ of dimension n≥3, and its twistor space PT, defined to be the space of all linear subspaces of maximal dimension of Qⁿ. Viewing complex Euclidean space CEⁿ as a dense open subset of Qⁿ, we show how local foliations tangent to certain integrable holomorphic totally null distributions of maximal rank on CEⁿ can be constructed in terms of complex submanifolds of PT. The construction is illustrated by means of two examples, one involving conformal Killing spinors, the other, conformal Killing-Yano 2-forms. We focus on the odd-dimensional case, and we treat the even-dimensional case only tangentially for comparison.
format Article
author Taghavi-Chabert, A.
spellingShingle Taghavi-Chabert, A.
Twistor Geometry of Null Foliations in Complex Euclidean Space
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Taghavi-Chabert, A.
author_sort Taghavi-Chabert, A.
title Twistor Geometry of Null Foliations in Complex Euclidean Space
title_short Twistor Geometry of Null Foliations in Complex Euclidean Space
title_full Twistor Geometry of Null Foliations in Complex Euclidean Space
title_fullStr Twistor Geometry of Null Foliations in Complex Euclidean Space
title_full_unstemmed Twistor Geometry of Null Foliations in Complex Euclidean Space
title_sort twistor geometry of null foliations in complex euclidean space
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/148560
citation_txt Twistor Geometry of Null Foliations in Complex Euclidean Space / A. Taghavi-Chabert // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT taghavichaberta twistorgeometryofnullfoliationsincomplexeuclideanspace
first_indexed 2023-05-20T17:29:44Z
last_indexed 2023-05-20T17:29:44Z
_version_ 1796153422792097792