Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation
A multi-Poisson structure on a Lie algebra g provides a systematic way to construct completely integrable Hamiltonian systems on g expressed in Lax form ∂Xλ/∂t=[Xλ,Aλ] in the sense of the isospectral deformation, where Xλ,Aλ∈g depend rationally on the indeterminate λ called the spectral parameter. I...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148562 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation / H. Chiba // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148562 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1485622019-02-19T01:25:29Z Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation Chiba, H. A multi-Poisson structure on a Lie algebra g provides a systematic way to construct completely integrable Hamiltonian systems on g expressed in Lax form ∂Xλ/∂t=[Xλ,Aλ] in the sense of the isospectral deformation, where Xλ,Aλ∈g depend rationally on the indeterminate λ called the spectral parameter. In this paper, a method for modifying the isospectral deformation equation to the Lax equation ∂Xλ/∂t=[Xλ,Aλ]+∂Aλ/∂λ in the sense of the isomonodromic deformation, which exhibits the Painlevé property, is proposed. This method gives a few new Painlevé systems of dimension four. 2017 Article Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation / H. Chiba // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 18 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 34M35; 34M45; 34M55 DOI:10.3842/SIGMA.2017.025 http://dspace.nbuv.gov.ua/handle/123456789/148562 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A multi-Poisson structure on a Lie algebra g provides a systematic way to construct completely integrable Hamiltonian systems on g expressed in Lax form ∂Xλ/∂t=[Xλ,Aλ] in the sense of the isospectral deformation, where Xλ,Aλ∈g depend rationally on the indeterminate λ called the spectral parameter. In this paper, a method for modifying the isospectral deformation equation to the Lax equation ∂Xλ/∂t=[Xλ,Aλ]+∂Aλ/∂λ in the sense of the isomonodromic deformation, which exhibits the Painlevé property, is proposed. This method gives a few new Painlevé systems of dimension four. |
format |
Article |
author |
Chiba, H. |
spellingShingle |
Chiba, H. Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Chiba, H. |
author_sort |
Chiba, H. |
title |
Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation |
title_short |
Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation |
title_full |
Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation |
title_fullStr |
Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation |
title_full_unstemmed |
Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation |
title_sort |
multi-poisson approach to the painlevé equations: from the isospectral deformation to the isomonodromic deformation |
publisher |
Інститут математики НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148562 |
citation_txt |
Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation / H. Chiba // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 18 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT chibah multipoissonapproachtothepainleveequationsfromtheisospectraldeformationtotheisomonodromicdeformation |
first_indexed |
2023-05-20T17:30:09Z |
last_indexed |
2023-05-20T17:30:09Z |
_version_ |
1796153439364841472 |