2025-02-23T09:05:19-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-148562%22&qt=morelikethis&rows=5
2025-02-23T09:05:19-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-148562%22&qt=morelikethis&rows=5
2025-02-23T09:05:19-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T09:05:19-05:00 DEBUG: Deserialized SOLR response
Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation
A multi-Poisson structure on a Lie algebra g provides a systematic way to construct completely integrable Hamiltonian systems on g expressed in Lax form ∂Xλ/∂t=[Xλ,Aλ] in the sense of the isospectral deformation, where Xλ,Aλ∈g depend rationally on the indeterminate λ called the spectral parameter. I...
Saved in:
Main Author: | Chiba, H. |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2017
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/148562 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-23T09:05:19-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-148562%22&qt=morelikethis
2025-02-23T09:05:19-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-148562%22&qt=morelikethis
2025-02-23T09:05:19-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T09:05:19-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution
by: Bibilo, Y., et al.
Published: (2015) -
The Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces
by: Chiba, H.
Published: (2016) -
The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I
by: Ormerod, C.M.
Published: (2011) -
From Polygons to Ultradiscrete Painlevé Equations
by: Ormerod, C.M., et al.
Published: (2015) -
Quantum Painlevé Equations: from Continuous to Discrete
by: Nagoya, H., et al.
Published: (2008)