Self-Dual Systems, their Symmetries and Reductions to the Bogoyavlensky Lattice

We recently introduced a class of ZN graded discrete Lax pairs and studied the associated discrete integrable systems (lattice equations). In particular, we introduced a subclass, which we called ''self-dual''. In this paper we discuss the continuous symmetries of these systems,...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Fordy, A.P., Xenitidis, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148563
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Self-Dual Systems, their Symmetries and Reductions to the Bogoyavlensky Lattice / A.P. Fordy, P. Xenitidis // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148563
record_format dspace
spelling irk-123456789-1485632019-02-19T01:29:11Z Self-Dual Systems, their Symmetries and Reductions to the Bogoyavlensky Lattice Fordy, A.P. Xenitidis, P. We recently introduced a class of ZN graded discrete Lax pairs and studied the associated discrete integrable systems (lattice equations). In particular, we introduced a subclass, which we called ''self-dual''. In this paper we discuss the continuous symmetries of these systems, their reductions and the relation of the latter to the Bogoyavlensky equation. 2017 Article Self-Dual Systems, their Symmetries and Reductions to the Bogoyavlensky Lattice / A.P. Fordy, P. Xenitidis // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 6 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 37K05; 37K10; 37K35; 39A05 DOI:10.3842/SIGMA.2017.051 http://dspace.nbuv.gov.ua/handle/123456789/148563 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We recently introduced a class of ZN graded discrete Lax pairs and studied the associated discrete integrable systems (lattice equations). In particular, we introduced a subclass, which we called ''self-dual''. In this paper we discuss the continuous symmetries of these systems, their reductions and the relation of the latter to the Bogoyavlensky equation.
format Article
author Fordy, A.P.
Xenitidis, P.
spellingShingle Fordy, A.P.
Xenitidis, P.
Self-Dual Systems, their Symmetries and Reductions to the Bogoyavlensky Lattice
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Fordy, A.P.
Xenitidis, P.
author_sort Fordy, A.P.
title Self-Dual Systems, their Symmetries and Reductions to the Bogoyavlensky Lattice
title_short Self-Dual Systems, their Symmetries and Reductions to the Bogoyavlensky Lattice
title_full Self-Dual Systems, their Symmetries and Reductions to the Bogoyavlensky Lattice
title_fullStr Self-Dual Systems, their Symmetries and Reductions to the Bogoyavlensky Lattice
title_full_unstemmed Self-Dual Systems, their Symmetries and Reductions to the Bogoyavlensky Lattice
title_sort self-dual systems, their symmetries and reductions to the bogoyavlensky lattice
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/148563
citation_txt Self-Dual Systems, their Symmetries and Reductions to the Bogoyavlensky Lattice / A.P. Fordy, P. Xenitidis // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 6 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT fordyap selfdualsystemstheirsymmetriesandreductionstothebogoyavlenskylattice
AT xenitidisp selfdualsystemstheirsymmetriesandreductionstothebogoyavlenskylattice
first_indexed 2023-05-20T17:30:51Z
last_indexed 2023-05-20T17:30:51Z
_version_ 1796153469713776640