2025-02-23T13:21:02-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-148565%22&qt=morelikethis&rows=5
2025-02-23T13:21:02-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-148565%22&qt=morelikethis&rows=5
2025-02-23T13:21:02-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T13:21:02-05:00 DEBUG: Deserialized SOLR response
Bethe Vectors for Composite Models with gl(2|1) and gl(1|2) Supersymmetry
Supersymmetric composite generalized quantum integrable models solvable by the algebraic Bethe ansatz are studied. Using a coproduct in the bialgebra of monodromy matrix elements and their action on Bethe vectors, formulas for Bethe vectors in the composite models with supersymmetry based on the sup...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2017
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/148565 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-148565 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1485652019-02-19T01:26:58Z Bethe Vectors for Composite Models with gl(2|1) and gl(1|2) Supersymmetry Fuksa, J. Supersymmetric composite generalized quantum integrable models solvable by the algebraic Bethe ansatz are studied. Using a coproduct in the bialgebra of monodromy matrix elements and their action on Bethe vectors, formulas for Bethe vectors in the composite models with supersymmetry based on the super-Yangians Y[gl(2|1)] and Y[gl(1|2)] are derived. 2017 Article Bethe Vectors for Composite Models with gl(2|1) and gl(1|2) Supersymmetry / J. Fuksa // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 33 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 81R50; 82B23 DOI:10.3842/SIGMA.2017.015 http://dspace.nbuv.gov.ua/handle/123456789/148565 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Supersymmetric composite generalized quantum integrable models solvable by the algebraic Bethe ansatz are studied. Using a coproduct in the bialgebra of monodromy matrix elements and their action on Bethe vectors, formulas for Bethe vectors in the composite models with supersymmetry based on the super-Yangians Y[gl(2|1)] and Y[gl(1|2)] are derived. |
format |
Article |
author |
Fuksa, J. |
spellingShingle |
Fuksa, J. Bethe Vectors for Composite Models with gl(2|1) and gl(1|2) Supersymmetry Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Fuksa, J. |
author_sort |
Fuksa, J. |
title |
Bethe Vectors for Composite Models with gl(2|1) and gl(1|2) Supersymmetry |
title_short |
Bethe Vectors for Composite Models with gl(2|1) and gl(1|2) Supersymmetry |
title_full |
Bethe Vectors for Composite Models with gl(2|1) and gl(1|2) Supersymmetry |
title_fullStr |
Bethe Vectors for Composite Models with gl(2|1) and gl(1|2) Supersymmetry |
title_full_unstemmed |
Bethe Vectors for Composite Models with gl(2|1) and gl(1|2) Supersymmetry |
title_sort |
bethe vectors for composite models with gl(2|1) and gl(1|2) supersymmetry |
publisher |
Інститут математики НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148565 |
citation_txt |
Bethe Vectors for Composite Models with gl(2|1) and gl(1|2) Supersymmetry / J. Fuksa // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 33 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT fuksaj bethevectorsforcompositemodelswithgl21andgl12supersymmetry |
first_indexed |
2023-05-20T17:30:09Z |
last_indexed |
2023-05-20T17:30:09Z |
_version_ |
1796153439576653824 |