The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable PDEs
In this paper, we study the formal solution space of a nonlinear PDE in a fiber bundle. To this end, we start with foundational material and introduce the notion of a pfd structure to build up a new concept of profinite dimensional manifolds. We show that the infinite jet space of the fiber bundle i...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148568 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable PDEs / B. Güneysu, M.J. Pflaum // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 50 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148568 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1485682019-02-19T01:24:29Z The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable PDEs Güneysu, B. Pflaum, M.J. In this paper, we study the formal solution space of a nonlinear PDE in a fiber bundle. To this end, we start with foundational material and introduce the notion of a pfd structure to build up a new concept of profinite dimensional manifolds. We show that the infinite jet space of the fiber bundle is a profinite dimensional manifold in a natural way. The formal solution space of the nonlinear PDE then is a subspace of this jet space, and inherits from it the structure of a profinite dimensional manifold, if the PDE is formally integrable. We apply our concept to scalar PDEs and prove a new criterion for formal integrability of such PDEs. In particular, this result entails that the Euler-Lagrange equation of a relativistic scalar field with a polynomial self-interaction is formally integrable. 2017 Article The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable PDEs / B. Güneysu, M.J. Pflaum // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 50 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 58A05; 58A20; 35A30 DOI:10.3842/SIGMA.2017.003 http://dspace.nbuv.gov.ua/handle/123456789/148568 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper, we study the formal solution space of a nonlinear PDE in a fiber bundle. To this end, we start with foundational material and introduce the notion of a pfd structure to build up a new concept of profinite dimensional manifolds. We show that the infinite jet space of the fiber bundle is a profinite dimensional manifold in a natural way. The formal solution space of the nonlinear PDE then is a subspace of this jet space, and inherits from it the structure of a profinite dimensional manifold, if the PDE is formally integrable. We apply our concept to scalar PDEs and prove a new criterion for formal integrability of such PDEs. In particular, this result entails that the Euler-Lagrange equation of a relativistic scalar field with a polynomial self-interaction is formally integrable. |
format |
Article |
author |
Güneysu, B. Pflaum, M.J. |
spellingShingle |
Güneysu, B. Pflaum, M.J. The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable PDEs Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Güneysu, B. Pflaum, M.J. |
author_sort |
Güneysu, B. |
title |
The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable PDEs |
title_short |
The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable PDEs |
title_full |
The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable PDEs |
title_fullStr |
The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable PDEs |
title_full_unstemmed |
The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable PDEs |
title_sort |
profinite dimensional manifold structure of formal solution spaces of formally integrable pdes |
publisher |
Інститут математики НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148568 |
citation_txt |
The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable PDEs / B. Güneysu, M.J. Pflaum // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 50 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT guneysub theprofinitedimensionalmanifoldstructureofformalsolutionspacesofformallyintegrablepdes AT pflaummj theprofinitedimensionalmanifoldstructureofformalsolutionspacesofformallyintegrablepdes AT guneysub profinitedimensionalmanifoldstructureofformalsolutionspacesofformallyintegrablepdes AT pflaummj profinitedimensionalmanifoldstructureofformalsolutionspacesofformallyintegrablepdes |
first_indexed |
2023-05-20T17:29:44Z |
last_indexed |
2023-05-20T17:29:44Z |
_version_ |
1796153420977012736 |