The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable PDEs

In this paper, we study the formal solution space of a nonlinear PDE in a fiber bundle. To this end, we start with foundational material and introduce the notion of a pfd structure to build up a new concept of profinite dimensional manifolds. We show that the infinite jet space of the fiber bundle i...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Güneysu, B., Pflaum, M.J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148568
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable PDEs / B. Güneysu, M.J. Pflaum // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 50 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148568
record_format dspace
spelling irk-123456789-1485682019-02-19T01:24:29Z The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable PDEs Güneysu, B. Pflaum, M.J. In this paper, we study the formal solution space of a nonlinear PDE in a fiber bundle. To this end, we start with foundational material and introduce the notion of a pfd structure to build up a new concept of profinite dimensional manifolds. We show that the infinite jet space of the fiber bundle is a profinite dimensional manifold in a natural way. The formal solution space of the nonlinear PDE then is a subspace of this jet space, and inherits from it the structure of a profinite dimensional manifold, if the PDE is formally integrable. We apply our concept to scalar PDEs and prove a new criterion for formal integrability of such PDEs. In particular, this result entails that the Euler-Lagrange equation of a relativistic scalar field with a polynomial self-interaction is formally integrable. 2017 Article The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable PDEs / B. Güneysu, M.J. Pflaum // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 50 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 58A05; 58A20; 35A30 DOI:10.3842/SIGMA.2017.003 http://dspace.nbuv.gov.ua/handle/123456789/148568 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper, we study the formal solution space of a nonlinear PDE in a fiber bundle. To this end, we start with foundational material and introduce the notion of a pfd structure to build up a new concept of profinite dimensional manifolds. We show that the infinite jet space of the fiber bundle is a profinite dimensional manifold in a natural way. The formal solution space of the nonlinear PDE then is a subspace of this jet space, and inherits from it the structure of a profinite dimensional manifold, if the PDE is formally integrable. We apply our concept to scalar PDEs and prove a new criterion for formal integrability of such PDEs. In particular, this result entails that the Euler-Lagrange equation of a relativistic scalar field with a polynomial self-interaction is formally integrable.
format Article
author Güneysu, B.
Pflaum, M.J.
spellingShingle Güneysu, B.
Pflaum, M.J.
The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable PDEs
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Güneysu, B.
Pflaum, M.J.
author_sort Güneysu, B.
title The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable PDEs
title_short The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable PDEs
title_full The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable PDEs
title_fullStr The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable PDEs
title_full_unstemmed The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable PDEs
title_sort profinite dimensional manifold structure of formal solution spaces of formally integrable pdes
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/148568
citation_txt The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable PDEs / B. Güneysu, M.J. Pflaum // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 50 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT guneysub theprofinitedimensionalmanifoldstructureofformalsolutionspacesofformallyintegrablepdes
AT pflaummj theprofinitedimensionalmanifoldstructureofformalsolutionspacesofformallyintegrablepdes
AT guneysub profinitedimensionalmanifoldstructureofformalsolutionspacesofformallyintegrablepdes
AT pflaummj profinitedimensionalmanifoldstructureofformalsolutionspacesofformallyintegrablepdes
first_indexed 2023-05-20T17:29:44Z
last_indexed 2023-05-20T17:29:44Z
_version_ 1796153420977012736