Symmetries of the Hirota Difference Equation

Continuous symmetries of the Hirota difference equation, commuting with shifts of independent variables, are derived by means of the dressing procedure. Action of these symmetries on the dependent variables of the equation is presented. Commutativity of these symmetries enables interpretation of the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Pogrebkov, A.K.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148569
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Symmetries of the Hirota Difference Equation / A.K. Pogrebkov // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148569
record_format dspace
spelling irk-123456789-1485692019-02-19T01:31:09Z Symmetries of the Hirota Difference Equation Pogrebkov, A.K. Continuous symmetries of the Hirota difference equation, commuting with shifts of independent variables, are derived by means of the dressing procedure. Action of these symmetries on the dependent variables of the equation is presented. Commutativity of these symmetries enables interpretation of their parameters as ''times'' of the nonlinear integrable partial differential-difference and differential equations. Examples of equations resulting in such procedure and their Lax pairs are given. Besides these, ordinary, symmetries the additional ones are introduced and their action on the Scattering data is presented. 2017 Article Symmetries of the Hirota Difference Equation / A.K. Pogrebkov // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 19 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35Q51; 37K10; 37K15; 37K40; 39A14 DOI:10.3842/SIGMA.2017.053 http://dspace.nbuv.gov.ua/handle/123456789/148569 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Continuous symmetries of the Hirota difference equation, commuting with shifts of independent variables, are derived by means of the dressing procedure. Action of these symmetries on the dependent variables of the equation is presented. Commutativity of these symmetries enables interpretation of their parameters as ''times'' of the nonlinear integrable partial differential-difference and differential equations. Examples of equations resulting in such procedure and their Lax pairs are given. Besides these, ordinary, symmetries the additional ones are introduced and their action on the Scattering data is presented.
format Article
author Pogrebkov, A.K.
spellingShingle Pogrebkov, A.K.
Symmetries of the Hirota Difference Equation
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Pogrebkov, A.K.
author_sort Pogrebkov, A.K.
title Symmetries of the Hirota Difference Equation
title_short Symmetries of the Hirota Difference Equation
title_full Symmetries of the Hirota Difference Equation
title_fullStr Symmetries of the Hirota Difference Equation
title_full_unstemmed Symmetries of the Hirota Difference Equation
title_sort symmetries of the hirota difference equation
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/148569
citation_txt Symmetries of the Hirota Difference Equation / A.K. Pogrebkov // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 19 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT pogrebkovak symmetriesofthehirotadifferenceequation
first_indexed 2023-05-20T17:30:52Z
last_indexed 2023-05-20T17:30:52Z
_version_ 1796153469922443264