On the Spectra of Real and Complex Lamé Operators
We study Lamé operators of the form L=−d²/dx²+m(m+1)ω²℘(ωx+z₀), with m∈N and ω a half-period of ℘(z). For rectangular period lattices, we can choose ω and z0 such that the potential is real, periodic and regular. It is known after Ince that the spectrum of the corresponding Lamé operator has a b...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148577 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the Spectra of Real and Complex Lamé Operators / W.A. Haese-Hill, M.A. Hallnäs, A.P. Veselov // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 32 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We study Lamé operators of the form
L=−d²/dx²+m(m+1)ω²℘(ωx+z₀),
with m∈N and ω a half-period of ℘(z). For rectangular period lattices, we can choose ω and z0 such that the potential is real, periodic and regular. It is known after Ince that the spectrum of the corresponding Lamé operator has a band structure with not more than m gaps. In the first part of the paper, we prove that the opened gaps are precisely the first m ones. In the second part, we study the Lamé spectrum for a generic period lattice when the potential is complex-valued. We concentrate on the m=1 case, when the spectrum consists of two regular analytic arcs, one of which extends to infinity, and briefly discuss the m=2 case, paying particular attention to the rhombic lattices. |
---|