Global Existence of Bi-Hamiltonian Structures on Orientable Three-Dimensional Manifolds

In this work, we show that an autonomous dynamical system defined by a nonvanishing vector field on an orientable three-dimensional manifold is globally bi-Hamiltonian if and only if the first Chern class of the normal bundle of the given vector field vanishes. Furthermore, the bi-Hamiltonian struct...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Işim Efe, M., Abadoğlu, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148578
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Global Existence of Bi-Hamiltonian Structures on Orientable Three-Dimensional Manifolds / M. Işim Efe, E. Abadoğlu // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148578
record_format dspace
spelling irk-123456789-1485782019-02-19T01:31:29Z Global Existence of Bi-Hamiltonian Structures on Orientable Three-Dimensional Manifolds Işim Efe, M. Abadoğlu, E. In this work, we show that an autonomous dynamical system defined by a nonvanishing vector field on an orientable three-dimensional manifold is globally bi-Hamiltonian if and only if the first Chern class of the normal bundle of the given vector field vanishes. Furthermore, the bi-Hamiltonian structure is globally compatible if and only if the Bott class of the complex codimension one foliation defined by the given vector field vanishes. 2017 Article Global Existence of Bi-Hamiltonian Structures on Orientable Three-Dimensional Manifolds / M. Işim Efe, E. Abadoğlu // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 13 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53D17; 53D35 DOI:10.3842/SIGMA.2017.055 http://dspace.nbuv.gov.ua/handle/123456789/148578 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this work, we show that an autonomous dynamical system defined by a nonvanishing vector field on an orientable three-dimensional manifold is globally bi-Hamiltonian if and only if the first Chern class of the normal bundle of the given vector field vanishes. Furthermore, the bi-Hamiltonian structure is globally compatible if and only if the Bott class of the complex codimension one foliation defined by the given vector field vanishes.
format Article
author Işim Efe, M.
Abadoğlu, E.
spellingShingle Işim Efe, M.
Abadoğlu, E.
Global Existence of Bi-Hamiltonian Structures on Orientable Three-Dimensional Manifolds
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Işim Efe, M.
Abadoğlu, E.
author_sort Işim Efe, M.
title Global Existence of Bi-Hamiltonian Structures on Orientable Three-Dimensional Manifolds
title_short Global Existence of Bi-Hamiltonian Structures on Orientable Three-Dimensional Manifolds
title_full Global Existence of Bi-Hamiltonian Structures on Orientable Three-Dimensional Manifolds
title_fullStr Global Existence of Bi-Hamiltonian Structures on Orientable Three-Dimensional Manifolds
title_full_unstemmed Global Existence of Bi-Hamiltonian Structures on Orientable Three-Dimensional Manifolds
title_sort global existence of bi-hamiltonian structures on orientable three-dimensional manifolds
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/148578
citation_txt Global Existence of Bi-Hamiltonian Structures on Orientable Three-Dimensional Manifolds / M. Işim Efe, E. Abadoğlu // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 13 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT isimefem globalexistenceofbihamiltonianstructuresonorientablethreedimensionalmanifolds
AT abadoglue globalexistenceofbihamiltonianstructuresonorientablethreedimensionalmanifolds
first_indexed 2023-05-20T17:30:52Z
last_indexed 2023-05-20T17:30:52Z
_version_ 1796153470135304192